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ABSTRACT. In this paper, a fractional Laplacian equation is investigated, which
involve critical or supercritical Sobolev exponent as follows:

{ (—=A)%u = Mu|P~2u + |u|"2u + plu/T 2y, in Q,

u=20 on 09,
where (—A)® is the fractional Laplacian operator with 0 < s < 1, 1 < p < 2 <
r< 2% <gq, 2= NQiVQS is the fractional critical Sobolev exponent, A, u > 0 are

parameters and Q C RV (N > 2s) is a bounded domain with smooth boundary 9.
By using variational methods, truncation and Moser iteration techniques, we show
that the problem has at least two nontrivial solutions.

VY wiit poboTi JOCHIIXKYETHCS HACTYIIHE JIpobOBe piBHAHHS Jlariaca, siKke BKIIOYaI0Th
KpUTHUIHUR ab0o HagkpuTudHui nokasHuk Cobosesa:

{ (=A)%u = Mu|P~2u + |u|"2u + plu/?2u, in Q,

u=20 on 09,
ne (—A)® — npobosuit oneparop Jlammaca 3 0 < s < 1,1 <p<2<r <2 <g,
2% = N2i\r25 e apoboBuit kpurn4Huil nokasHuk CoboseBa, A, p > 0 € napameTpu Ta

Q C RY(N > 2s) — obmerkeHa 061aCTh 3 IIaKO0 rpanumeo 0S). 3a I0moMOromw0
BapialifiHuX MeTO/iB, CKOPOYEHHs Ta iTepalliiHuxX MeToidiB Mozepa mokasaHo, IO
3a7ada Ma€ IpUHAMMHI 1Ba HETPUBIAILHUX PO3B’SKIB.

1. INTRODUCTION

In this article, we consider the following fractional Laplacian equation involving the
critical or supercritical nonlinearities term

(=A)*u = MulP~2u + |u|""2u + plu|?u in Q,

u=0 on 0f), (1.1)

where Q C RN (N > 2s) is a bounded domain with smooth boundary 99, 0 < s < 1,
l<p<2<r<2;<gqgand?2;= N2iv25 is the fractional critical Sobolev exponent, A and
[ are nonnegative parameters.

The powers (—A)® of the Laplacian operator —A, in a bounded domain  with zero
Dirichlet boundary data, are defined through the spectral decomposition using the powers
of the eigenvalues of the original operator. Let (pg, ¢x) be the eigenvalues and the
corresponding eigenfunctions of —A in 2 with zero Dirichlet boundary value data. Then
(p;, r) are the eigenvalues and the corresponding eigenfunctions of (—A)® with zero
Dirichlet boundary value condition. So, the fractional Laplacian (—A)® is well-defined in
the space of the functions

[N

X3(©) = {u =Y anpr € LAQ)+ Jullx; = (D afoi)” < oo},
k=1 k=1
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and, as a consequence,
oo
(=A)'u=>arpier.
=1

Motivated by the work of Caffarelli and Silvestre in [7], several authors have considered
an equivalent definition of the operator (—A)?® in a bounded domain with zero Dirichlet
boundary condition, see [4, 8, 18, 3, 1, 2, 7, 6, 10, 11, 16]. Associated to the bounded
domain, let us consider the cylinder Co = Q x (0,00) and the lateral boundary of the
cylinder 05.Cq = 092 x (0,00). For a functional u € X§(Q2), we define the s-harmonic
extension U = Es(u) to the cylinder Cq as a solution to the problem

div(t'=2*VU) = 0 in Cq,

U=0 on 0rCq,

U=u on 2 x {0}.
The extension function U belongs to the space

1

H31(Co) = {w € L3(Ca) sw =0 on 91.Ca, [[wlm, = (k;/ 12 VulPdrdt) " < oo},
' Ca

Moreover, the relevance of the extension function U is that it is related to the fractional
Laplacian of the original function u through the formula
ou

oU
— S = —_— = — 1 17237
(=A)’u(x) 5 ks thr(r)1+t ot (z,t),

where kg = % is a normalization constant. With this constant we have that the

extension operator is an isometry between X§(Q2) and H 1 (Ca). That is
IEs@llmy, = llullxg,  Vu e X5(Q).
With this extension, we can reformulate our problem (1.1) as
—div(t'=*VU) =0 in Cq,
U=0 on 01Cq,
oUu

ovs

where the function u = U(-,0) defined in the sense of traces, belongs to the space X§(€2).
Obviously, the equation (1.2) is a local problem.
An energy solution to problem (1.2) is a function U € H 1 (Cq) such that

(1.2)

= ANuP"2u+ Ju|"2u+ plu/T % in Q,

k/ tl_QSVUVdedt:)\/ |u|p_2uvdx+/ \u|7'—2uvdx+u/ lu|T 2 uvdz
Ca Q Q Q

for all V' € H&L(CQ)7 where v = V(x,0). For any energy solution U € Hj ;(Cq) to
problem (1.2), the function v = U(-,0) belongs to the space X§(£2) and is an energy
solution to problem (1.1). The converse is also true. Therefore, both formulations are
equivalent.

The associated energy functional to problem (1.2) is

1
[(U) = ’i/ t1—23|VU|2dxdt—3/ |u|pdx—f/ |u|rdx—ﬁ/ lufda.
2 Jeg pJa T Ja q.Jq

Clearly, if U is a critical point of I in Hy 1 (Cq), the function u = U(-,0) is a weak solution
of (1.1) in X§(€2). Therefore, in the sequel, and in view of the above equivalence, we
will use both formulations of the problem, in Q or in Cq, whenever we may take some
advantage. In particular, we will use the extension version (1.2) when dealing with the
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fractional operator acting on products of functions, since it is not clear how to calculate
this action.

In this paper, we study the existence and multiplicity of solutions for the problem with
subcritical term and critical or supercritical term. In our problem, the first difficulty lie in
that the fractional Laplacian operator (—A)® is nonlocal, and this makes some calculation
difficult. To overcome this difficulty, we do not work on the problem (1.1) directly, and
we transform the nonlocal problem into a local problem by s-harmonic extension. The
second difficulty lies in which problem (1.2) is supercritical, and we can not use directly
the variational techniques because the corresponding energy functional is not well-defined
on the space H& 1 (Cq). To overcome this difficulty, one usually uses the truncation and
the Moser iteration. This idea has been widely applied in the supercritical Laplacian
problem in the past decades, see [9, 14, 12, 13] and references therein.

Now, we are ready to state the main results of this paper.

Theorem 1.1. Assume 1 <p <2 <r <2 <gq, then (1.1) has at least two nontrivial
solutions if X and p are sufficiently small.

For the general problem

(—A)Su = Mu|P~2u + |u|" " tu + ph(x, u) in Q, (1.3)
u=0 on 0, ’

where ) is a bounded smooth domain in RY (N > 2s), 1 < p < 2 < r < 2% and the
general perturbation h(z,u) satisfies

(h) |h(z,uw)| < Co (1 + |u|?7t), where ¢ > 27 and Cy > 0 is a constant.

We also have the following result similar to Theorem 1.1.

Theorem 1.2. Let h satisfy (h) and 1 <p <2 <r < 2% Then the problem (1.3) has at
least two montrivial solutions for A and p small enough.

This article is organized as follows. In Section 2, we consider a truncated problem (2.7)
and obtain two nontrivial solutions by using variational methods. In Section 3, we finish
the proof of Theorems 1.1 and 1.2 by demonstrating that solutions of (2.7) are actually
solutions of the original problem (1.2), this reduces to an L> estimate.

For convenience we fix some notations. The Lebesgue space LI(Q2) (1 < g < oo) with
1
the norm [Jul[ze = ( [, |u|%dx)*; C or C;(i = 1,2,---,) denote different positive constants;

S is the best Sobolev embedding constant
g ks [ t' 25| VU P dadt

= ——, where u(z) =U(z,0). (1.4)
UEH] LCNMO} ([ Juf2ida) T

2. TRUNCATED PROBLEM

One of the main difficulty to prove the existence solutions of problem (1.2) by using
variational methods is that I does not satisfying the (PS) condition for large energy level
for ¢ = 2% and I is not well defined on H&L(Cg) for ¢ > 2%.

Let K > 0 be a real number whose value will be fixed later. Following the idea in
[15, 17, 20|, define the following truncate function

{|u|q2u, if 0 < Ju|l <K,

2.5
KW' 2u,  if [u| > K, 28)

g (u) =

where 0 € (2,2%) and 6 > r. Thus, gx satisfies
lgrc(u)| < K970’ Vucek. (2.6)
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Now, we investigate the truncated problem

(—A)*u = Mu|P2u+ [u|""u + pgr (u) in Q, 2.7)
u=0 on O9. '
where u = U(z,0).
Define in X§(2) the corresponding energy functional of the problem (2.7) by
/| A) 2l dac—f/|u|pdas—f/|u\ dx — /GK
where )
" —|ul?, if Jul <K,
Gr(u) = / gxe(tydt = ] (2.8)
0 aKq_e|u|97 if |ul > K.
Then G g satisfies
1
Gg(u) < qu*0|u|9 (2.9)
and
gr (W)u > rGg(u), YuekR. (2.10)

From (2.6), we get gk is a superlinear function with subcritical growth, then Iy €
CH(X§5(Q),R). Let Iy (u) denote the Frechet derivative of Ixc at u. A function u € X§(€)
is said to be a nontrivial solution of the problem (2.7) if

u#0, (Ix(u),v)=0, YveX;Q).

Remark 2.1. The original problem (1.1) is critical or supercritical, after truncation, it
becomes subcritical and the functional I (u) € C* is well-definedo This fact allows us to
use the usual minimax methods.

By using sub-super solution principle, we get one nontrivial solution for (2.7).

Theorem 2.2. There exist two constants Ao, po > 0 such that for all A, p with 0 < XA < Ao
and 0 < p < g, problem (2.7) has one nontrivial solutions.

Proof. Let e denote the nonnegative solution of

(-A)Ye=1 in Q,
e=0 on Of2.

Then e € C§°(€2) and |le]|L~ < C for some positive constant C' > 0. Since 1 < p < 2 <
r < 2% and 2 < 6 < 2%, we can find A; > 0 and p; > 0 such that for all A € (0, A1) and
w € (0, p11) there exits M = M (A, u) > 0 satisfying

M > AMP el D + M7l + pK 0 MO e
Thus, Me satisfies
(—A)*(Me) = [(=A)*e]M
= M > AMP e[ 7 4+ M7 fel| 7 4 B0 MO e]|
> MMe)P~t + (Me)" ™ + pgre(Me),

and Me = 0 on 02, which implies that Me is a supersolution of equation (2.7). On
the other hand, let (71, 1) be the first eigenvalue and corresponding eigenfunction of
the fractional Laplacian operator (—A)® in ) with zero Dirichlet boundary value on 9f2.
Then for all £ > 0 small enough and A, i > 0 such that

(—A)*(ep1) = 1 (ep1) < Mew1)P ™! + (e1)" ™ + pgr (epr).-
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This implies that e¢; is a subsolution of (2.7). Taking € possibly smaller, we also have
g1 < Me. Tt follows that (2.7) has a solution epy < u; < Me whenever A < \g and
i < po. Moreover, from [4] we obtain that u; is a local minimum of I in the C-topology,
hence a local minimum for I in the X§(£2)-topology. O

Next, we look for a second solution of (2.7) by mountain mass theorem. From the
s-harmonic extension, the problem (2.7) can be reformulated to the following local problem

—div(t'7**VU) = 0 in Cq,
U=0 on 8LCQ7 (211)
ou

3 = MulP™%u + Ju|""%u + pgr (u) in Q,
VS

where u(z) = U(x, 0) defined in the sense of traces. The associated functional in Hg ; (Cq)
is

IK(u):%/ t1*2S\VU(x,t)|2dxdt—i/ \u|pdx—1/ |u|rdx—u/GK(u)dx.
Ca P Ja rJa Q

Lemma 2.3. The functional Ik satisfies (PS). for any ¢ € R.
Proof. Let {U,} C Hy 1 (Co) be a Palais-Smale sequence of Zf at level ¢, that is,
Ik (U,) — ¢ and ZIi(U,)—0 as n— oo.

By Sobolev embedding theorem and (2.10), we get

cton([Unllmy ) = Jx(Un) = =(Jk(Un), Un)

- (% - %)k /CQ #1725\ VU, [2dadt — (% - %) /Q V[P di

+ g/ﬂ [gK(un)un - TGK(un)}dx (2.12)

r—2
2r

S|

v

k/ t1*2S\VUn\2dxdt—Ar_p/ | |Pd
Ca prJa

r—p
pr

r—2
Uy, — AL,

where u,, = U,(x,0), S > 0 is the Sobolev constant and 1 < p < 2 < r. Thus, {U,} is
bounded in H{ ;(Cq).
Up to a subsequence, there exists U € H67L(CQ> such that U, — U weakly in H&L(CQ),

un, — u strongly in L¥(Q) (1 < a < 2¥), and uy,(z) — u(x) a.e in Q, where u,, = U, (z,0)
and u = U(x,0). Then

/ (|un|p*2un - |u\p*2u)(un —u)dz — 0,

Q

/ (|un|T_2un — |u\r_2u)(un —u)dz — 0,
Q

and

/Q l9k (upn) — gk (w)] (uy, —w)dz — 0 as n — oo.
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So, we conclude by computing
! !
o(1) = Tk (Un) = Ik (U), Un = U)

= ks/ =21V (U,, — U)|*dzdt — )\/(|un|p72un — ulP72u) (uy — u)dz
Ca Q
— / (Jn|™ 2ty — Ju|" 2w (uy — u)da
Q

it Lo (un) = ()], = )
_ 2
= Vs~ Ul , +o(0).
which shows that U, — U strongly in H&’ 1.(Cq). This proves Lemma 2.3. O
Lemma 2.4. For every U € Hj (Ca) \ {0}, we have

Ik (tU) = —oc0 as t — +oo.
Proof. Let U € Hjj (Co) \ {0} and ¢ > 0 we have

t2 AP tr
Tk (t0) = S0, —7/ lufPda — 7/ |u|rdx—u/ G (tu)da
0.L P Ja T Ja Q

t2 AP tr
= §HU||§13L - 7/ |ulPda — */ |ul"dx
’ D Ja T Ja

t t'Ka?
R |u|9dx — MT lu|’da,
9 J{ltul<K} {ltu[>K}

where u = U(z,0). Since f{|tu|<K} lulfde - 0ast — +ocand 1 <p<2<r<f<2%
it follows that Zx (tU) — —oo as t — +o00. The proof is completed. O

Theorem 2.5. Let 1 <p <2 < r < 2%, then the problem (2.7) has a nontrivial solution
U2 S Hé,L(CQ)

Proof. From Lemmas 2.3 and 2.4, by the mountain pass theorem there exists a Us €
H&L(CQ)\{O} such that IK(UQ) = Cm, where

em = inf max g (y(t))

veTI' te[0,1]
and
I'={yeC(0,1], Hy(Ca)) : 7(0) =T, Ik(~(1)) <O}
Thus, the problem (2.7) has a nontrivial solution Uy and Uy # Uy. O

Lemma 2.6. The solutions for problem (2.7) obtained in Theorems 2.2 and 2.5 are
bounded in H&L(CQ), that is, there exists Cy > 0 independent of u such that

Uil , < Co, Vi=1, 2.

Proof. Let ¢, be the mountain pass level for Zx obtained in Theorem 2.5 and u;(z) =
Ui(z,0) (i =1, 2). Then from (2.10) we have

cm > I (Us)

=ZIx(U;) — %@}((Ui), Ui)

(% - %) ||Ui||§-léyL - )‘(% - %) /Q |uilPdx + %/Q {9K<ui)ui - TGK(ui)]dx

r—2 9 r—0p »
vy, AL [ jupds
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r —-p

-2 r
> LUy, — AR U,
Since 1 < p < 2 < r, we infer that there exists Cy > 0 which is independent of p such
that ||Uz||H& L < Coforalle=1, 2. O

Remark 2.7. If these two nontrivial solution satisfy |u;| < K for all i = 1, 2, then in
view of the definition of gx, we have gx (u;) = p|u;|? %u;, and there U;, i = 1, 2, are also
solutions of the original problem (1.2). This implies that problem (1.1) has at least two
solutions u; = U;(x,0) (i =1, 2). To show this, we only need to prove ||u;||p~ < K for
alli=1,2.

3. PROOF OF THE MAIN RESULT

To prove Theorem 1.1, we only need to show that solutions of (2.7) are actually
bounded by some K. Our approach is a variant of Moser iteration technique inspired by
[5, 15, 20, 19].

Proof of Theorem 1.1. For convenience, set U := U;, i = 1,2, u(x) = U(x,0), and
¢(z) = ®(x,0). Since U € Hy ;(Ca) is a weak solution of (2.7), for any ® € Hj 1 (Ca),
we get
ke | t172VUV®dzdt = )\/ |ulP~2updz
Co ¢ (3.13)
+ [l ugds g [ gictuyeds.
Q Q
Set Uy = max{U,0}, U_ = —min{U,0}. Then |U| = Uy + U_. We can argue with
the positive and negative part of U separately.
We first deal with U;. For each L > 0, let us define the following functions:

U ( t) U—‘rv if U+ < La
aj, = .
L L, if Uy >L,

and
7z, =0V, w,=v"U,,
where § > 1 will be fixed later.
Taking Z, as a test function in (3.13), we obtain

k/ tl_stUVZdedt:)\/ |ulP~?u 2 dx
Co “ (3.14)

—|—/ |u|T*2uzde+p/gK(u)zde,
Q Q

where zp,(z) = Zr(x,0).
The left-hand side of the above equality (3.14) is

/ 12 VUV Z dadt

Ca

:/ =2y (UL — U)V(UFPVU, dedt
Ca

— / t'=2(vU, — VU UV, 28 - WUV U VUL ) dadt (3.15)
Ca

:/ £-2v U, PU2 ) dpdt
Ca

+2(8 — 1)/ =2y, U TIVUL VU L dadt.
Ca
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From the definition of Up, we have

2(8 — 1)/ t=2u, UV, VU dadt
Ca

=2(8 - 1)/ =22V, YU, VU dadt
Con{0<U<L}

(3.16)
=2(8 - 1)/ 72 vU, PUR Y dadt
Con{0<U<L}
> 0.
Thus, it follows from (3.15) and (3.16) that
/ t'3VUV Zpdadt > / 12|\ vU, PUR Y dzdt. (3.17)
CQ CQ
On the other hand,
/\/ |u\P_2uzLda:+/ \u|T_2uzde—|—,u/ gi (u) zrdx
) ) Q
= )\/ (uy +u_ )P (uy — u_)uzL(’B*l)qudx
Q (3.18)

+ /Q(u+ +u )" " (uy — u_)uzL(’Bfl)u_s_dx +u /Q gK(u)uzL(’Bfl)u_s_dx

S)\/Quﬁ_ui(ﬁ_l)dx—k/Qu:_u%(ﬁ_l)dx+qu70/Quiu2L(ﬁ_1)da:,

where vy = Uy (2,0), ur, = Ur(x,0) and 2z, = Zr(x,0). Then, we deduce from (3.14),
(3.17) and (3.18) for 5 > 1 that

ks/ t1*28|VU+|2Uz(B_1)dxdt§ )\/ uﬁui(ﬂ_l) dz+/ u:_ui(’g_l)dx
Ca @ @ (3.19)
"’,Uine/ uiu%(ﬁ_l)dx.
Q

Let Wi, = Uy~ 'U,. We have

VW =US'VU, + (8- 1)UL VUL U,.
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By the Sobolev embedding theorem, we obtain

2
( |wL|2:da;) <5 [ 2|V W L B dedt
Q Ca

=Sk, | 7B - 1DULUL VUL + U VU, Pdadt
Ca

<2871 (k:/ t172)(8 = WULUL >VUL 2 ddt
Ca

+k5/ t1—28|Uf—1VU+|2dxdt)
Ca

(3.20)
< 25—1((5— 1)%/ =220\ v, Pdadt
Ca
+ ks /C #2200V gy, | da;dt)
Q

<2571 ((ﬁ 124 1)ks /C #1220V gu, 2dadt
Q

_ B—1.2 1
=28 1,82((7) + 5

where S > 0 is the best fractional Sobolev embedding constant and wz, = W(-,0).
Since 8 > 1, we have (’3_1)2 + é < 2. Thus, we can use (3.19) and (3.20) to obtain

B
<Q

)ks / 12y, Pdedt,
Ca

2
ZIda;) 485718k, [ 22 UP0 Y v, Pdadt
Ca
§4S_162()\/ |u+\pui(ﬁ dm+/|u |"u7, 20071 g
Q
+,qu_9/ |u+|9u2671)dx>
Q
12 2,26-0 3.\ 2 ([ 260\ 7
<457 [()\(/ [t |“uy, dl‘) (/uL dm)
Q Q
+/ |u+|ru2L(571)dx+,qu_9/ |u+|9ui(ﬁ1)dx} (3.21)
Q

2 —
< 457152\ 2”/ PRl T /|u 2u;?Vda

/|u \T dz—l—qu*e/ \u+|9u2L(5_1)dx)
Q

+/ |U+‘Tui(ﬂ_1)dx+p,Kq76/ \u+|0u2L(’B_1)d:17).
Q Q

Considering the Sobolev embedding Hy ; (Cq)) < L (Q) and |U, 2, < Co (see Lemma
2.6), we have

1 1
dx "< S—%(ks/ t1_25|VU+|2dxdt>2 < Sty (3.22)

Ca
Let a = m Since uf u T ulPw?, u+ui(6 D= u',*w? and uiui(ﬁ_l) =

w?, we now use the Hélder inequality, (3.20), (3.21) and (3.22) to conclude that, whenever
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wr, € L*(Q), we have that

% dx =

([ uosic)

< 457182 A/u§<ﬁ*1)dx+A/ wp|2da
L Q Q

[ el P+ i | |u+|0-2wfdx]
Q

2(8-1)

2Ida:) = +A\Q|”T‘2(/Q\wL|adx)

2
o

1o 2*—2(ﬁ 1)
<5715 [Ny ([ 1us
i Q
+(/ |u+|%2:dx /|wL|adx
Q
2 2
—l—,qu_e(/ dx) a(/ |wL|°‘da:)a}
Q Q
2*¥ —2(B8—1)

2;-208-1) _ a=: &
gAY ) / | dz)
Q

< 48713 [A|Q|
10 ([ ) 7 ([ )’

: 1—% 2
+qu*9 /|u+|28d:c /|wL|°‘dx> }
2% —2(B-1) -

< 487132 [A|Q| AR 1)+()\|Q\ 10T (CpsE) 2
([ ourvas)’]

T UK (CoS™ )
2

< B Crpi -maX{ / oy |d) } (3.23)

where

2% —2(8-1)
Crpic = 45‘1()\\Q|7’4‘§ S1-AC2B-
1T (CoS 1) 2 4+ uK10(CoS )0~ 2) > 0.

So, from (3.23) and the definition of Wi, we obtain

(/Q (B-1)2° 2*dx)% < BCnnx maX{l’ (/Q

By Fatou’s Lemma on the variable L, we get

ie.,
(/Q BQde) 723 Sﬁ%CﬁﬁKmaX{l, (/Quiacm)alB} (3.24)
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Set Bi= 2 =142 S % > 1. Then, (3.24) implies that uy € L?2:(Q). Since f2a = B27,
we have that the 1nequahty (3.24) also holds with 3 replaced by 32. Hence, we get

2:ﬁ2dx ﬁ
1
< (B )5202/12Kmax{1 ) (/ |u+|a/32dx)am}
Q
1 L . B
= ()7 CffxmaX{l 28 4y 255}

1 1
35 B
< 562+5 Cf‘iK ? max{ / \u+|"‘ﬁdac }

By iterating this process, we obtain
.\ TE w421 Shogep oL
(/S; d$)25ﬁ Sﬂ m+ + 2+ C;’/LK W 2/5 max{l, (/Q

Taking the limit as m — 400 in (3.25), we have

4:*""

2
—51*2+ﬁ023 K max{

o

Zde);;}.

(3.25)

sl < B™CT, e max {1, S7HCo }

where
oo o0
1

m
S SRR
m=1 ﬂm m=1 Qﬂm
Now, to prove Theorem 1.1, we need to choose suitable values of A\, u, K carefully so
that

BICRE, max{1 : S*%co} <z, (3.26)

this is equivalent to

3
%)

K
24™ max {1, S’%C’o}

Cxpk <

That is,

2% —2(B—

(B-1) ”
QT SBR[ T (Cos )

K
2 ™ max {1, 57%00}

+uK17(Co87%)72 <

[

Choose K > 0 to satisfy the inequality (note that A < Ag)

1

2 ™ max{1, S~2Cy}

(3.27)

e 0—r
QI 4]0 = (cos—%)r*) >0
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and then fix pg such that

L 1 [5( K )*
T Kema(Cos iy LA \2gn{n, 57 ECo)

2% —2(8—1

) o o—r
AT SACEETY SNl ) (Cos )

Let p* := min{po, px }, we obtain (3.26) for p € [0, u*] and some K satisfying (3.27),
that is

Jusllie <50 Ve 0] A€ 0,2 (3.25)
Similarly, we can also have the estimate for u_ as follows:
ucllo~ < 50 e, A€f0,h] (3.29)
Then, from (3.28) and (3.30), we have
lullpe < K, Vupel0,u], Xel0,N)]. (3.30)
This completes the proof. O

Proof of Theorem 1.2 In fact, the truncation of h(z,u) can be given by

h(z,u), if |u] < K,
hK(x,u = . —0) 16—2 . (331)
min{h(z,u) , Co(1 + K %u|""*u)}, if Ju| > K,
where 0 € (2,2%) and 0 > r. Then hy satisfies
|hi(z,u)] < Co(1+ KT%u|7Y), vueR. (3.32)
The truncated problem associated to problem (1.3) is the following
—div(t'~*VU) =0, in Cq,
U= 0, on 8LCQ, (3.33)
ou

= NulP"?u + u|"?u + phi(z,u), n Q,

ovs
where u(z) = U(z,0). By (3.31), (3.32) and a technique similar to the one in Theorem 1.1,
we can prove that the truncated problem (3.33) has two nontrivial solutions Uy, Us, one
is a local minimum, the other is of Mountain Pass type, and satisfying ||u;||r~ < K,
i = 1,2. In view of the definition of hx, we know that U; and U, are also solutions of the
problem (3.33). This implies that original problem (1.3) has two solutions u; = U;(-,0)
(¢ =1,2). This completes the proof of Theorem 1.2.
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