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ON BARCILON’S FORMULA FOR KREIN’S STRING

I. S. KAC AND V. PIVOVARCHIK

Abstract. We find conditions on two sequences of positive numbers that are suffi-

cient for the sequences to be the Neumann and the Dirichlet spectra of a Krein string
such that Barcilon’s formula holds true.

1. Introduction

There exists a series of papers [1], [2], [3], [4], [8] on the so-called Barcilon formula. In
[1], V. Barcilon considered the differential equation

(1.1) y′′ + λp(x)y = 0, 0 ≤ x ≤ b < +∞,

where λ is a spectral parameter, the function p(x) is continuous and p(x) > 0 on [0, b].
This equation describes small transverse vibrations of a string of linear density p(x)
stretched by a unit force, and b is the length of the string. Denote by {µn}∞n=1 the
spectrum of the boundary value problem generated by (1.1) and the boundary conditions

y′(0) = y(b) = 0

and by {λn}∞n=1 the spectrum of the boundary value problem generated by (1.1) and the
boundary conditions

y(0) = y(b) = 0.

In [1] (Theorem 2 ) the following formula was stated (following C.-L. Shen [2] we call it
Barcilon’s formula) expressing p(0) via b, {µn}∞n=1 and {λn}∞n=1:

(1.2) p(0) =
1

b2µ1

∞∏

n=1

λ2n
µnµn+1

.

A rigorous proof of this formula was given by C.-L. Shen [2] under rather restrictive
conditions of piecewise differentiability of p(x) with p′(x) having a finite number of dis-
continuities.

In [8] using the results of [7] we show existence of a wide class of strings for which

formula (1.2) is true with a nonzero finite limit lim
x→+0

M(x)
x

instead of p(0) (M(x) is a

nondecreasing nonnegative mass distribution function normalized by M(0) = 0).
An inverse problem approach is to find information on p from known spectra. In this

context it is more natural to describe validity of (1.2) in terms of spectra and avoid using
conditions of piecewise differentiability. Moreover, the validity of (1.2) depends directly
on asymptotics of {λn}∞n=1 and {µn}∞n=1. A necessary condition for validity of (1.2) is
convergence of the series on the right-hand side of it. However, this condition seems to be
not sufficient. In [8] it was proved that (1.2) is true for a wide class of strings including

those for which M(x) is a singular function, i.e. M ′(x)
a.e.
= 0.

In Section 4 of the present paper we propose a sufficient condition for validity of (1.2).

2010 Mathematics Subject Classification. Primary 34A55; Secondary 34B09, 34L20.
Key words and phrases. Coefficient of dynamic compliance, density, eigenvalues, spectral function,

S-function, regular string.

270



ON BARCILON’S FORMULA FOR KREIN’S STRING 271

For this purpose in Sections 2 and 3 we need first to describe some results on the
spectral theory of the string with a regular left end (M. G. Krein’s string).

2. Certain facts from spectral theory of strings

2.1. The string and classification of its ends. Let I be an interval of one of the
kinds (0, b), (0, b], [0, b) or [0, b] where 0 < b < ∞. Let M(x) (M(x) < ∞ for all x ∈ I)
be a nondecreasing function on I which can have jumps, intervals of constant value,
absolutely continuous, continuous singular parts. We set a0 =: infFM , b0 =: supFM ,
where FM is the set of points of growth of M(x). We assume that FM is an infinite set
of points and that a0 = 0. Let us associate with I andM a string S(I,M) with the mass
distribution described by M(x) in the sense that M(x2 + 0)−M(x1 − 0) is the mass of
the part of the string located on [x1, x2] for each x1, x2 ∈ I and x1 ≤ x2 (here we set
M(−0) =M(0) if 0 ∈ I and M(b+0) =M(b) if b ∈ I). The left (right) end of the string
S(I,M) is said to be regular if M(+0) > −∞ (M(b − 0) < ∞). In the opposite case
the end is said to be singular. A regular left (right) end is said to be completely regular
if 0 ∈ I (b ∈ I). A string with both ends regular is said to be a regular string. In the
opposite case it is said to be a singular string. If the string is regular and 0 /∈ I (b /∈ I)
we set

M(0) = lim
x→+0

M(x) (M(b) = lim
x→b−0

M(x)).

2.2. The differential equation of a string. Below we use a definition of the differen-
tial expression lI,M for the string S(I,M) which fits to this situation.

Definition 2.1. Let DM,I be the set of all functions f(x) defined on I such that
1) f is locally absolutely continuous on I with respect to Lebesgue measure,
2) there exist finite left f ′−(x) and right f ′+(x) derivatives at each interior point x of I,
3) there exists an M -measurable function g such that for any two points x1, x2 of I
(x1 ≤ x2)

(2.1) f ′±(x2)− f ′±(x1) = −
∫ x2±0

x1±0

g(x) dM(x)

for each of the four combinations of signs which are the same on both sides of (2.1).
Here we mean that f ′−(0) = f ′+(0) and f ′+(b) = f ′−(b). For a function f ∈ DI,M we set
lM,I [f ](x) = g(x) where g is the function involved in (2.1).

Remark. We have defined lM,I [f ](x) up to equivalence with respect to theM - measure.
It is clear that for f ∈ DI,M

lI,M [f ](x) = − d

(d)M(x)
f ′+(x) = − d

(d)M(x)
f ′−(x)

at M -almost all x. Here d
(d)M(x) is the symbol of the symmetric derivative with respect

to M .

The expression

(2.2) lI,M [y]− λy = 0 (x ∈ I),

where λ is the spectral parameter, we call the differential equation of the string S(I,M).
A function u ∈ DI,M is s said to be a solution of (2.2) if lI,M [u](x) − λu(x) = 0 for
M -almost all x ∈ I. Note that for any λ > 0 each solution to (2.2) is the amplitude

function of vibrations of our string with the frequency
√
λ .
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2.3. M. G. Krein’s strings S1(I,M) and S0(I,M). We deal with strings S(I,M) the
left ends of which are completely regular (for convenience we place them at x = 0) while
the right ends x = b are either completely regular, or singular and then b /∈ I. The ends
do not bear point masses.

A string S(I,M) is written as S1(I,M) if its left end is free to move without friction
in the direction orthogonal to the x-axis, i.e. to the equilibrium position of the string.
By S0(I,M) we denote a string S(I,M) with the left end fixed. We assume that if the
right end of a string S1(I,M) or S0(I,M) is completely regular then it is fixed.

We define fundamental functions φ(x, λ) and ψ(x, λ) of the strings S1(I,M) and
S0(I,M), respectively, as the solutions of equation (2.2) which satisfy the initial con-
ditions φ(0, λ) = 1, φ′+(0, λ) = 0 and ψ(0, λ) = 0, ψ′

+(0, λ) = 1, respectively.
It is known (see [6], Sec. 2) that for any fixed x ∈ I the functions φ(x, λ), ψ(x, λ),

φ′−(x, λ), ψ
′
−(x, λ), φ

′
+(x.λ) and ψ

′
+(x, λ) are real entire functions of λ of order not more

than 1/2.

Remark. A meromorphic function in C or an entire function is said to be real if it
attains real values for real values of the variable.

Since φ(x, 0) = 1 and ψ(x, 0) = x, for each fixed x ∈ I the following representations
are valid:

φ(x, λ) =
∏

j

(
1− λ

µj(x)

)
, ψ(x, λ) = x

∏

j

(
1− λ

λj(x)

)
,

where µj(x), λj(x), j = 1, 2, . . . are eigenvalues of S1([0, x],M) and S0([0, x],M) with
the right ends fixed.

The set of squares of frequencies of free vibrations of a regular string is called its
spectrum. The spectrum depends on the mass distribution and on whether the ends are
fixed or free. Therefore, we mean by spectra of strings S1(I,M) and S0(I,M) the sets
of eigenvalues of the boundary value problems

lI,M [y]− λy = 0, y′+(0) = y(b) = 0,

lI,M [y]− λy = 0, y(0) = y(b) = 0,

respectively. It is easy to see that the spectrum {µj}∞j=1 := {µj(b)}∞j=1 of a completely
regular string S1(I,M) is the set of zeros of the entire function φ(b, λ) and the spectrum
{λj}∞j=1 := {λj(b)}∞j=1 of a completely regular string S0(I,M) is the set of zeros of ψ(b, λ)
with the same I and M , respectively. This is in accordance with a general definition of
the spectra of the strings S0(I,M) and S1(I,M) given below.

Definition 2.2. ([5]). A function f(z) of a complex variable z is said to be an R-function
or to belong to the class (R) if

1) it is defined and holomorphic in each of the half-planes Imz > 0 and Imz < 0,

2) f(z) = f(z) (Imz 6= 0),
3) Imz Imf(z) ≥ 0 (Imz 6= 0).

Such a function is also often called a Nevanlinna function.

Definition 2.3. A function f is said to be an S-function or to belong to the class (S) if
1) f ∈ (R),
2) f is analytic in Ext[0,∞) (= C\[0,∞)),
3) f(z) ≥ 0 for all z ∈ (−∞, 0).

We denote by L̂2
M (I) the set of functions f ∈ L2

M (I) which are identically zero in
some left neighborhood of x = b if the right end is singular. If the right end is regular

then L̂2
M (I) = L2

M (I).
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Definition 2.4. A nondecreasing function τ(λ) on (−∞,∞) normalized by the condition

τ(λ) =
1

2
(τ(λ+ 0) + τ(λ− 0)) ∀λ ∈ (−∞,∞), τ(0) = 0,

is said to be a spectral function of the string S1(I,M) (S0(I,M)) if the mapping U :

f 7→ F where f ∈ L̂2
M (I) and

F(λ) =

∫ L

0

f(x)φ(x, λ) dM(x) (F(λ) =

∫ L

0

f(x)ψ(x, λ) dM(x))

maps L̂2
M (I) isometrically into L2

τ (−∞,∞), i.e. if for each function f ∈ L̂2
M (I) the

’Parseval identity’ is true:

∫ ∞

−∞

|F(λ)|2dτ(λ) =
∫

I

|f(x)|2dM(x),

where F = Uf . A spectral function is said to be orthogonal if U maps L̂2
M (I) onto a

dense part of L2
τ (−∞,∞). The set of points of growth of a spectral function is said to

be its spectrum.

The function

(2.3) T (z) := lim
x→b−0

ψ(x, z)

φ(x, z)
, z ∈ (C\[0,+∞))

is said to be the coefficient of dynamic compliance of the string S1(I,M). If the right

end x = b is completely regular then T (z) = ψ(b,z)
φ(b,z) is a meromorphic function. In any

case T (z) is an S-function.

Being an S-function, T (z) has the spectral function τ (1)(λ) which is constant on
(−∞, 0). Since inf FM = 0, we have (see [5], Sec. 5, [6], Sec. 10):

(2.4) T (z) =

∫ +∞

−0

dτ (1)(λ)

λ− z
, z ∈ (C\[0,+∞)).

We keep the norming

τ (1)(λ) = τ (1)(−0) for λ < 0,

τ (1)(λ) =
1

2
(τ (1)(λ+ 0) + τ (1)(λ− 0)) ∀λ ∈ R, τ (1)(0) = 0,

which is common for R-functions (recall that (S) ⊂ (R)). Being normed this way the
function τ (1)(λ) is a spectral function of a string S1(I,M) (see [6], Sec. 3, Main Theorem
and Sec. 10, Theorem 10.1). This spectral function of the string S1(I,M) is called its
main spectral function. The main spectral function is orthogonal. Notice that

∫ +∞

−0

dτ (1)(λ)

1 + λ
<∞.

In case of a singular string, τ (1)(λ) is its unique spectral function with nonnegative
spectrum. The spectrum of the main spectral function of a string S1(I,M) is said to be
the spectrum of this string.
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2.4. Kasahara’s theorem. It was shown in [7] that if a string S1(I,M) is such that

there exists a nonzero finite limit lim
x→+0

M(x)
x

then the limits lim
z→+∞

(T (−z)z 1
2 )

and π
2 lim
λ→+∞

τ (1)(λ)λ−
1
2 also exist, neither of them equals zero, and

(2.5) lim
x→+0

M(x)

x
=

(
lim

z→+∞
(T (−z)z 1

2 )

)−2

=

(
π

2
lim

λ→+∞
τ (1)(λ)λ−

1
2

)−2

.

Remark. Equations (2.5) remain true if τ (1)(λ) is changed for any other spectral func-
tion of the same string (see [7], Lemma 6).

In the case of a string S(I,M) with a regular right end we have T (z) = ψ(b,z)
φ(b,z) .

Therefore, the first equation in (2.5) is an analogue of the one which is also called
Barcilon formula in [3].

Some years after [7], a paper by Kasahara [9] appeared where the results of [7] were
generalized and inverted. In particular, Theorem 2 in [9] implies that if one of the limits
in (2.5) exists and is not zero, also the other limits in (2.5) exist and (2.5) is valid.

It should be noticed that unlike [1], [2], [3] the results in [7] and [9] were obtained
without any assumption on continuity or piecewise differentiability of the density of the
string. By the way, the first limit in (2.5), i.e. the right derivative of the function M(x)
at x = 0, i.e. the density of the string at x = 0 can exist and be finite and nonzero even
in the case where M(x) is a pure jump function.

2.5. The main spectral function of the string S1(I,M) and the length of the

string. If τ (1)(λ) is the main spectral function of a string S1(I,M) (regular or singular),
then

(2.6)

∫ +∞

−0

dτ (1)(λ)

λ
= b

in both cases of finite and infinite b. This result was obtained by M. G. Krein [10].
It should be mentioned that if for some ǫ > 0 the interval [0, ǫ) has zero τ (1)-measure

then the integral in (2.6) is finite and (2.4) implies T (0) = b <∞.

3. Relation between the discrete spectra of the strings S1(I,M) and

S0(I,M) and the behavior of M(x) at x→ +0

3.1. Spectral function via two spectra. Let us remind that in case ofM(b) = ∞ the
necessary and sufficient condition for discreteness of the spectrum is

lim
x→b−0

M(x)(b− x) = 0.

Let a string S(I,M) have the length b, the string S1(I,M) generated by S(I,M) have
discrete spectrum {µk}∞k=1 where 0 < µ1 < µ2 < . . . and let {λk}∞k=1 where λ1 < λ2 < . . .
be the spectrum of the string S0(I,M) generated by the string S(I,M). It is known that
these spectra interlace:

0 < µ1 < λ1 < µ2 < λ2 < · · ·
Kasahara’s theorem mentioned above shows that information about the behavior ofM(x)
at x→ +0 can be extracted from the behavior of the main spectral function τ (1)(λ) of the
string S1(I,M) at λ → +∞. We will use the following theorems (see [8], Theorems 4.1
and 4.2).

Theorem 3.1. The function T (z) defined by (2.3) admits representation

(3.1) T (z) = b

∞∏

k=1

1− z
λk

1− z
µk

, z ∈ (C\{µk}∞k=1)
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independently of whether the string is regular or not.

Theorem 3.2. Let two sequences {µn}∞n=1 and {λn}∞n=1 of interlacing real numbers be
given:

(3.2) 0 < µ1 < λ1 < µ2 < λ2 < · · ·
Then there exists a unique string S(I,M) of a given finite length b such that the

spectrum of the string S1(I,M) coincides with {µn}∞n=1 and the spectrum of the string
S0(I,M) coincides with {λn}∞n=1.

In what follows we will say that the string S(I,M), the existence of which is stated
in Theorem 3.2, corresponds to the data b, {µk}∞k=1, {λk}∞k=1.

4. Main result

Now we are ready to state our result.

Theorem 4.1. Let two sequences {µn}∞n=1 and {λn}∞n=1 satisfy (3.2), let the product

(4.1)
1

b2µ1

∞∏

n=1

λ2n
µnµn+1

converge and let

(4.2)
∑

k∈N\K

(
λk − µk
µk+1 − λk

+
µk+1 − λk
λk − µk

− 2

)
<∞,

where K is the set of all those k-s for which

λk ∈
(
µk,

2µkµk+1

µk + µk+1

)
∪
[
µk + µk+1

2
, µk+1

)
.

Then there exists a unique string of length b with two spectra {µn}∞n=1 and {λn}∞n=1

and for this string

lim
x→+0

M(x)

x
=

1

b2µ1

∞∏

n=1

λ2n
µnµn+1

.

Proof. Using (2.5) and (3.1) we obtain

lim
x→+0

M(x)

x
=

1

µ1b2

∞∏

k=1

λ2k
µkµk+1

lim
z→+∞

∞∏

k=1

(µk + z)(µk+1 + z)

(λk + z)2
.

Let us consider the function∣∣∣∣1−
(µk + z)(µk+1 + z)

(λk + z)2

∣∣∣∣ , z ∈ [0,∞).

It attains its maximum value
λ2k − µkµk+1

λ2k
at z = 0 if

zk =:
µk+µk+1

2 λk − µkµk+1

µk+µk+1

2 − λk
≤ 0,

i.e. if k ∈ K. If k ∈ N\K then

max
z∈[0,∞)

∣∣∣∣1−
(µk + z)(µk+1 + z)

(λk + z)2

∣∣∣∣ =

(
µk+µk+1

2 − λk

)2

(µk+1 − λk)(λk − µk)
.
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It is easy to check that under the condition (4.2)

∑

k∈N\K

(
µk+µk+1

2 − λk

)2

(µk+1 − λk)(λk − µk)
<∞.

Since the product in (4.1) converge we have
∞∑

k=1

|λ2k − µkµk+1|
λ2k

<∞.

Thus,
∞∑

k=1

∣∣∣∣1−
(µk + z)(µk+1 + z)

(λk + z)2

∣∣∣∣

can be majorized by a convergent series independent of z. Therefore,

lim
z→+∞

∞∏

k=1

(µk + z)(µk+1 + z)

(λk + z)2
= 1.

Theorem is proved. �
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