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LAGRANGIAN PAIRS IN HILBERT SPACES

ADRIAN SANDOVICI

ABSTRACT. Weakly Lagrangian pairs and Lagrangian pairs in a pair of Hilbert spaces
(91, $2) are defined. The weakly Lagrangian pair and Lagrangian pair extensions in
(91, H2) of a given weakly Lagrangian pair in (1, $2) are characterized and those
extensions which are operators are identified. A description of all Lagrangian pair
extensions in a larger pair of Hilbert spaces (51, 52) of a given weakly Lagrangian
pair in (91, $2) is also given.

1. INTRODUCTION

Let A; and As be two (not necessarily densely defined) operators in a Hilbert space
9 and assume that U is a unitary operator in $) which commutes with A; and that A, is
a restriction of the (linear) relation U*Af. Using the language of (linear) relations this
assumption can be written as

UAlelU, AQCU*AT’
where the operator and its graph are identified. Let V; and V5 be two operators from
(the graph of) A; to (the graph of) A% and from (the graph of) As to (the graph of) A7,
which are defined as follows
Vi(z, Arx) = (2, UA1z), Va(y, Asy) = (y,UA2y), =€ domA;, y €& dom As,

so that V7 and V5 are isometric operators.

The above situation can be described in a general scheme using the concept of weakly
Lagrangian pair in a pair of Hilbert spaces. This concept is the subject of the paper and
is introduced as follows. Let 1, $H2 be two Hilbert spaces and let A; and As be two
relations from $); to 2 and from 9 to 91, respectively. The pair (A1, As) is said to be
a weakly dual pair in the pair of Hilbert spaces (91, $2), if the following inclusions hold

(1.1) dom A; C dom A5 and dom Ay C dom Aj.

The pair (A1, Ag) is said to be a dual pairif A; C A3, cf. [13, 14]. Furthermore, a weakly
dual pair is said to be a weakly Lagrangian pair if there are two isometries, V7 : A3 — A}
and Vo : Ay — A7 of the form

Vi(zr,22) = (z1,23), (21,22) € A1, |22 = [|22]l2,
and
Va(yz, 1) = (y2,91):  (y2,91) € Ao, lalls = llyallr-
By definition, a Lagrangian pair is a weakly Lagrangian pair with
(1.2) dom A; =dom A5 and dom Ay = dom A7,
and whose isometries V; and V3 are from A; onto A% and from As onto A3, so that
V1A =AY and VLA, = Af.
When $; = $H2 and A; = As, a weakly Lagrangian pair becomes a formally normal

relation, a notion which has been introduced by E. A. Coddington in [5]. Clearly, dual
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pairs and formally normal subspaces are particular cases of weakly Lagrangian pairs.
Therefore, a densely defined formally normal operator N in a Hilbert space $) gives the
weakly Lagrangian pair (N, N) in (9, $)) with the isometries V; = V5 =: V given by

V(z,Nz) = (z,N*z), x & domN,

cf. [5]. Furthermore, a normal operator N in a Hilbert space $) determines the Lagrangian
pair (]\N/',]V), cf. [3, 5].

Recently, the theory of dual pairs in Hilbert spaces has been developed by M. M. Mala-
mud and V. I. Mogilevskii (see [13, 14]). Their treatment is mainly based on the con-
cepts of boundary triplets and the Krein formula. In the present paper the duality of
two relations in Hilbert spaces is reconsidered in order to study both dual pairs and
formally normal subspaces. Some algebraic descriptions of weakly Lagrangian pairs and
Lagrangian pairs extensions of a given weakly Lagrangian pair are proposed. The main
results of this paper are parallel with the ones in [5] and complete the theory of dual pair
of relations proposed by Malamud and Mogilevskii.

The so-called Dirac structure on a linear space has been introduced by T. J. Courant
in [6], and both geometrical and functional analysis approaches on finite-dimensional
differentiable manifolds or on Hilbert spaces have been developed, cf. [7, 16, 17, 18]. In
fact a Dirac structure is a relation in a Hilbert space $ such that A = —A*, so that
it can be viewed as a particular Lagrangian pair. An approach to joint semi-normality
based on the theory of Dirac and Laplace operators on a Dirac vector bundle has been
developed in [15]. Using the concepts introduced in this paper, the theories proposed in
the above mentioned references might be extended in order to develop new theories in
geometry, physics and engineering.

The organization of the paper is as follows. In Section 2 some general facts concerning
relations from a Hilbert space $); to a Hilbert space $)5 are presented. In Section 3
the notions of weakly Lagrangian pair and Lagrangian pair in (91, 2) are analyzed.
Section 4 gives a complete description of all weakly Lagrangian pairs and Lagrangian
pairs extensions in ()1, 92) of a weakly Lagrangian pair in ()1, $2). Those extensions
which are (graphs of) operators are explicitly characterized. This result contains the
description of all Lagrangian pair extensions of a given densely defined weakly Lagrangian
pair. Section 5 is devoted to a study of the weakly Lagrangian pair extensions in larger
Hilbert spaces. In particular, Proposition 5.3 shows that a weakly Lagrangian pair need
not have Lagrangian pair extensions in any larger pair of Hilbert spaces. The description
of the possible Lagrangian pair extensions in a larger pair of Hilbert spaces of a weakly
Lagrangian pair is also given. Finally, the last section contains an example of a weakly
Lagrangian pair of differential operators.

2. PRELIMINARIES

Let 9;, ¢ = 1, 2, be two Hilbert spaces with the inner products denoted by [-,-];,
i =1, 2, and with the corresponding norms denoted by || - ||;, ¢ = 1, 2, respectively. A
typical element of the Cartesian product $; x $9 is an ordered pair (f1, f2), fi € 9,
i =1, 2. A relation A from $); to $o, is by definition the linear subspace A of the Hilbert
space 91 X $>. The domain and the kernel of A are linear subspaces of $); which are
denoted by dom A and ker A, and are defined by

dom A :={f1 : (f1,f2) € A}, ker A:={f1: (f1,0) € A},

while the range and the multivalued part of A are linear subspaces of )5 which are
denoted by ran A and mul A, and are defined by

ran A :={fo : (f1,f2) € A}, muld:={fs : (0, f2) € A}.
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A relation A is (the graph of) an operator precisely when mul A = {0}. The inverse of
A, is the relation A~! from $» to $; defined by

A7 ={(fo, f1) : (f1, fo) € A}.

Clearly, dom A~! = ran A and ker A~! = mul A.

A relation A is closed if it is closed as a subspace of £ X 9, in which case ker A and
mul A are closed subspaces of $1 and $o, respectively. The adjoint A* of a relation A is
the closed relation given by

A ={(fa2, f1) € H2 x H1 : ((f2, f1), (91, 92)) = 0 for all (g1,92) € A},

where

((f2, f1), (91, 92)) = [f1, 911 — [f2, g2]2,

with (f1, f2), (91,92) € H1 X Ha.
An important tool in the theory of relations in Hilbert spaces is the operator Jio
defined on all of $; x H9 into Hy x H1 as follows

Jia(f1, f2) = (f2, = f1),  (f1, f2) € H1 X Ha.

Similarly, the operator J;; can be defined on all of 2 X $H; into H; X Ho, so that
JorJ12 = —Ig, x5, and JiaJor = —Ig,xe,. Furthermore, if A is a relation from $; to
9o, then it is easily checked that

A* = (92 x 91) © (Ji2A) = (J19A) T = Jia(Ah).
Finally, if A C B are two closed relations from $); to o then
(2.1) Ji2(B& A) = A* & B*.

Let A be a closed relation from $; to $2. Define the closed relation A., to be the
set of all elements of the form (0, f3) in A, and let A; := A© A,. Then Aj; is a closed
operator from $; to 2 with dom A, = dom A. The following result describes some
simple facts about A, and A, which were noted for instance in [1].

Lemma 2.1. Let ;, i = 1, 2 be two Hilbert spaces. If A is a closed relation from $1 to
9o, then

(i) mulA = (dom A*)*;

(i) dom A, = dom A is dense in (mul A*)";

(iii) ranA, C (mul A)*.

An object is said to be maximal if it is maximal with respect to the operation of
inclusion of sets in the class of sets in which it is included. The formal identification
of an operator with its graph is implicitly assumed, so that an operator is viewed as a

relation and a maximal object will be maximal in the sense of relations. Throughout the
paper, assume that the relations (operators) which are involved are closed.

3. WEAKLY LAGRANGIAN PAIRS IN HILBERT SPACES

Let (A1, A2) be a weakly Lagrangian pair in (91, $2). Define the relations B; and
By as follows
Bl = VYQA27 BQ = V1A1~

Then dom By = dom Ay, dom B; = dom A4, and Vi, V5 take A; onto By and As onto By,
respectively, in a one to one way. Since B; C A}, i = 1, 2, it follows that 4; C B}, ¢ =
1, 2, which implies

(3.1) dom B; = dom Ay C dom A}, dom By =dom A; C dom A3.

Thus (Bj, By) can be viewed as a weakly Lagrangian pair with isometries V; ! and V;
respectively. Next, a simple non-trivial example is stated.
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Example 3.1. Let $H; and $5 be two unitarily equivalent Hilbert spaces and let § :=
1 B H2 be their orthogonal sum. Assume that Aj; @ H; — H; and Asy : H; — Ho are
two bounded everywhere defined operators. Furthermore, consider U, V', W and T four
unitary operators from 1 to 2. Define on $ the following two (non-densely defined)
operators by

Ay A5 U
3.2 Ay = , Ag = 217,
(32) ' <A21) ’ (VA11>
with dom A; = dom As = ;. Furthermore, their adjoints are two (proper) linear

relations in $) given by

(33) Ay{ = { ((Z;) ’ <A>{1h1 ;A§1h2>) : hl S Sjla h27 6 S SjZ }7

and

1 -1
(3.4) A5 = { (<Z;) ) (U Az ; AuV hQ)) :h1 €91, he, BE 9D }

Clearly, dom A} = dom A% = $ and mul A} = mul A5 = 2. Define the linear operator
Vi from A; to A% by

hl A11h1 . hl U—1A21h1
Vl <(0> ’ <A21h1>) - (<O> ’ < TAl]_hl >) 5 for allhl 6‘61,

and the linear operator V5 from A, to Aj by

hi\ (A3 Uhi\\ _ ([l At by
‘/2 <( 0) ’ (VATIhl - 0 ) WA;thl ; for allhl & fjl.

It is easily seen that Vi and Vs are two isometries and that dom A; C dom A3, and
dom Ay C dom A7, so that the pair (A7, As) is a weakly Lagrangian pair in (£, $) which,
in general, is not reducible neither to a dual pair nor to a formally normal relation as
the next result shows.

Lemma 3.2. Let A and As be the linear operators given by (3.2).
(1) The pair (A1, As) is reducible to a dual pair if and only if Aoy = UAq;;
(i) The pair (A1, As) is reducible to a formally normal relation if and only if Ay =
UA;, =V A7,

Proof. (i) Clearly, (A1, Az) is reducible to a dual pair if and only if 4; C A%, equivalently
Ao =UA.

(ii) Furthermore, (A1, As) is reducible to a formally normal relation if and only if
A1 = Ay, equivalently Ay = UAT, =V A7, g

A deep study of this example, involving the notion of boundary triplets adapted to
the case of weakly Lagrangian pairs, will be done elsewhere.

In the paper i and j are mainly used in order to denote the indices of the Hilbert
spaces $)1 and $o, and the indices of the relations A; and A;. They run from 1 to 2,
such that ¢ # j, and, this fact is not mentioned whenever it is obvious.

The following result shows the behavior of a weakly Lagrangian pair with respect to
the decomposition of a relation in its operator part and its multivalued part.

Lemma 3.3. If (41, A3) is a weakly Lagrangian pair in (91, 9H2), then

(3.5) Vi(Ar), = (Vidi), = (B2),, Va(42), = (VaAs), = (B1),,
and
(3.6) Vi(A1)y = (Vidi) = (B2), V2(A2)y = (Va2A2) = (B1) -

Proof. Since A; and Aj are closed relations it follows that A; = (A4;), ® (Ai). 1 =1, 2.
As it can be easily verified, V;, i = 1, 2, preserve the inner products, so that (3.5) and
(3.6) follow. O
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Theorem 3.4. Let (A1, A3) be a weakly Lagrangian pair in (91, 92) with the isometries
Vi and V. Then
(i) (A, A2) is a Lagrangian pair if and only if A; = Bf, i =1, 2.
(ii ) If Ag;, 1 =1, 2, are closed subspaces of A;, i =1, 2, then (Ap1, Aoz2) is a weakly
Lagrangian pair with the isometries Vo; :==V; [ A;, 1 =1, 2.
(iii ) A1 and As are both operators if and only if one of the following equivalent con-
ditions are verified:
(a) By and Bj are both operators;
(b) dom A} and dom A% are dense in $1 and 92, respectively;
(¢) dom B and dom B} are dense in $1 and $2, respectively.
(iv ) A5 and A} are both operators if and only if one of the following equivalent con-
ditions are verified:
(a) BF and Bj are both operators;
(b) dom A; and dom Ay are dense in $1 and $2, respectively.

Proof. Let i,j = 1,2, i # j. Clearly, {A;, A2} is a Lagrangian pair if and only if
B; = Af,i =1, 2. Then, it is a Lagrangian pair if and only if A; = B}, i = 1, 2, which
means that (i) holds. If Ay; C A;, then A7 C Aj,;, and

ViAoi = Boj C V;A; = B; C A} C Ay,

Thus dom Ay; = dom By; C dom A}, and Vp; are isometries of Ag; onto Vo; Ag; = Bo; C
Ag;, so that (ii) follows. Furthermore, {0,y,} € A; if and only if V;{0,y;} = {0,y;} € B;

for some y; such that [|y;[; = [|yll;. Thus (dom Af)J‘ = mul 4; = {0} if and only if
(dom B;)™ = mul B; = {0}, which leads to (iii). Finally,
mul A7 = (dom A;)* = mul BY.

Then A% and A} are both operators if and only if B} and Bj are both operators, or,
equivalently, dom A; = dom By and dom As = dom B are dense in £; and §)o, respec-
tively. The proof is now complete. (I

Corollary 3.5. Let (A1, As) be a weakly Lagrangian pair in (91, 92). Then both
((Al)sa(AQ)s) and ((Al)oov(AQ)oo)
are weakly Lagrangian pairs in (91, $2).

Proof. A simple application of Lemma 3.3 and Theorem 3.4 leads to the statement of
this result. |

Let & := (mul A;)", i = 1, 2. Since dom (4;), is dense in (mulAf)l and ran (A4;)s C
(mul A;)" it follows that
(3.7) (A)s € (mul AH)" x (mul 4;)F,
and similarly
(3.8) (A), C (mul A;)" x (mul A7)*.
The relation dom A; C dom A; leads to
(3.9) (mul A" C (mul 4;)".
It is easily seen from (3.7)-(3.9), that

(Ai)s CR; x R, (A])s C R xR,

Denote (A;)s := (A;)s N (R x K;). A natural question is when ((A41)s, (A2)s) is weakly
Lagrangian in (R, &1). The key of the answer is given by (A;)®, which denotes the

adjoint of (4;)s, viewed as a relation from £; to &;. The next result gives an “estimation”
of (Al)? .
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Lemma 3.6. If (A1, As) is a weakly Lagrangian pair in (1, $2) then

(3.10) (A7), € (Ai)g C A7
Proof. Let (z,y) € (Af), C Af. Then, (z,y) € & x &; and
(3.11) ((z,y),(a,b)) =0,

for all (a,b) € A;. In particular this is true for all (a,b) € (4;)y. Thus (z,y) € (4;)2, and
the first inclusion is established. Assume now that (z,y) € (4;)%. Then (z,y) € R; X &;

and (3.11) holds for all (a,b) € (A;),. Each (a,b) € A; can be written as

(3.12) (a,b) = (a,b1) + (0, b2),
with (a,b1) € (Ai)s, and (0,b2) € (A;)o. Then clearly
<(:z:,y),(a,b)> = [yra]ﬁj - [1‘7b1]ﬁi - [x’bQ}ﬁi

= [y> a]ﬁj - [337 bl]ﬁi
= <(x,y),(a,b1)> =0,
for all (a,b) € A;, which implies that (x,y) € Af, concluding the proof of the lemma. O

Remark 3.7. A direct consequence of Lemma 3.6 is that dom (4;), C dom (A;)¥ since
(3.13) dom (4;), = dom (A;)s = dom A; C dom A} = dom (A;)S C dom (4,)%.
Moreover, there exists a natural isometry for (4;),: it is the isometry V; restricted to
(4;)s, so that

Vi(Ai)o = Vi(4i)s = (B))s-
Since (Bj)s C Aj, it is known that if (z,y) € (B;)s then ((z,y), (a,b)) = 0 for all (a,b) €
(A;)s. However, the inclusion V;(4;), C (A4;)% does not necessarily hold; although
x € domA; € R, it is not known that y € &;. No such problem arises in the case of a
Lagrangian pair, as the following result shows.

Proposition 3.8. Let (A1, As) be a Lagrangian pair in (91, H2). Then
(1) (Aj)o0 = (A7)
(i) ((A1)e, (A2)s) is a Lagrangian pair in (Ra, R1), whose components are densely
defined operators. Moreover,

(Ai)g = (47), -
Proof. Clearly,
mul A} = (dornAj)L = (dom A¥)" = mul 4;,
which gives (i). Also, dom (A;), = dom A; = dom A7 is dense in &;, and (3.13) now
implies that dom (A4;), = dom (4;)%. From Lemma 3.6 it is known that
(3.14) (A7), € (A3

Furthermore, the following two relations
(A1) S (A7), ® (A7) o) N (Ri x &),
and

(A7) oo = (Aj)oc;
imply that (Aj)_ is orthogonal to &; x K;, and
(3.15) (A))g S (A7), N (8 x &) = (47),-
Now, the relations (3.14) and (3.15) lead to the identity (A;)& = (A}),. The isometry
(Vi)e for (A;)s, defined by

is such that
Vi(Ai)e = Vi(Ai)s = (A7), = (4))3.

o

Therefore (V;), is an isometry of (A4;), onto (A4;)%. The proof is now complete. O
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4. LAGRANGIAN EXTENSIONS OF A WEAKLY LAGRANGIAN PAIR

Assume that (A1, A2) is a weakly Lagrangian pair in (£)1, $2) and let (111, AVQ) be
a weakly Lagrangian extension of (A, A3). It is the purpose of this section to give
an algebraic characterization of all such extensions. If X~/1 and 172 are the isometries for
(El, Avg), then the isometries V4 and V, for (Ag, Ag) are V; = ‘Z [ A;, i =1,2. The

following relation

Bj=ViA; =ViA; CV,A; =By, i,j=1,2, i#]j,
holds, and thus

A, CACBCB;, i=1,2
In particular,
A, C A CBY, B, CA CA i=1,2

This implies that gl = A; ® C;, where C; := gz © A; is a subspace of B}, which added
orthogonally to A;, give rise to weakly Lagrangian extension (ﬁl, 112) of (A1, As).
The next result gives a purely algebraic characterization of all weakly Lagrangian pair
extensions of a weakly Lagrangian pair.

Theorem 4.1. Let (Ay, As) be a weakly Lagrangian pair in (91, $2) with the isometries
Vi and Vo, and let X; := B © A;, 1 = 1,2. Then (Zl,gg) 18 a weakly Lagrangian

pair extension of (Ay, As) in (91, H2) with the isometries 171 and ‘72 if and only if the
following items are valid:

(1) Xs=X1:0 X9 ,i=1,2;
( 111) dolei - dom (inXQj), i, j = 1, 2, Z7é j,’
(iv) Vi =V; @V, where V/ is an isometry of X1; into J;;Xo; of the form
Vi’(@ﬂ/’) = (9071/)/)7 HwHJ = W’va h,y=12 1 7é J-
Proof. Assume that (A4, As) is a weakly Lagrangian pair with the isometries V; and
V5 and (Al, gg) is a weakly Lagrangian pair extension with the isometries Vi and ‘72,
respectively. Thus V; = ‘Z [ A;, i =1, 2. Clearly, with Xy, := gi@Ai and Xo; := Bz‘@gi,
the items (i) and (ii) are valid. Moreover, for ¢, j =1, 2, i # j,
ViXi = ‘Z(gz S A;) = V,A; © ViA,
V,A; ©V;A; = B; © B;
- A;@B] = JJZ(B;@A]) :inXQj.

Thus dom X1; = dom ‘Z—XU C dom J;; X5;, proving (iii). If V/ := XZ I X1; then clearly
V! satisfies the conditions in (iv).

For the converse implication, assume that X; can be decomposed as an orthogonal sum

as in (i), and (1117 Avg) is defined by (ii), with Xy; and Xs; satisfying (iii) and (iv). It

will be shown that (Zl, gg) is a weakly Lagrangian pair extension of (A4, As). Clearly,

A; C 211 C B and consequently B; C gf C A}. Moreover, Xo; = B} © 211 =X, 0 Xy;
and using (2.1) it follows that A} = B; & J;; X2;. By (iii), the relations dom A, = dom B;
and dom Xli Q dom JﬂXQj lead to

dom ﬁz = dom A; + dom Xy; C dom B; + dom Jj; X»; = dom g;‘,
where the sums are algebraic ones. Consequently, dom gi C dom Z}‘ Now \72 =V,eoV/

maps fL isometrically into /T;‘ in the prescribed manner, and thus (/Th AVQ) is a weakly
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Lagrangian pair with isometries 172»72' = 1, 2, and, since V; = ‘N/Z [ A; it follows that
(Zl, Avg) is a weakly Lagrangian extension of (A;, Ajy). O

The next result describes those weakly Lagrangian pair extensions (ﬁl, gg) of a
weakly Lagrangian pair (A;, As) which are Lagrangian pairs.
Theorem 4.2. Let (A1, As) be a weakly Lagrangian pair in (91, H2) with the isometries
Vi and Vs and let X; :== B ©A;, i =1, 2. Then (Zl, 112) is a Lagrangian pair extension

of (A1, Az) in (91, H2) with the isometries Vi and Vs if and only if the following items
are valid:

(1) Xs=X1,® Xo,1=1, 2;
( 111) dOHleZ' = dOHl (inXQj), i, ] = ]., 2, 7 7&],
(iv) Vi=V;@ V], i=1, 2, where V! is an isometry of X1; onto J;;Xo; of the form
Vilp, ) ={e:¥'}, 19l = 1415

Proof. Assume (/L, Ag) is a Lagrangian pair extension of (A;, A3). Then (i) and (ii)
are valid due to Theorem 4.1. Since ‘71111 = Ej = X; it follows that IZXU = Z; ©B; =
J;jiX2;, and thus (iii) and (iv) hold true.

Conversely, assume that (A1, As) is weakly Lagrangian with some X, ¢ = 1, 2 sat-
isfying (i)-(iv). It is known from Theorem 4.1 that (/L, ;{z) is a weakly Lagrangian
extension of (Ay, Ag) with

A=A & Xy, Af=B;&J;Xe
Then dom Zl = dom g;*, since

dom A; = dom 4; + dom X1; = dom B; + dom J;; X5; = dom Z}*

Moreover, 171-, i1 =1, 2, give the desired isometries of KZ onto E;‘ and thus (ﬁl, ﬁg) isa
Lagrangian pair extension of (Aj, As). O

Theorem 4.2 differs from Theorem 4.1 in that equality occurs in (iii) and V is now
onto J;;X;. The condition (iv) implies that dim X7; = dim X5;. Moreover, it is possible
to specify those extensions (Zl, /12) of (A1, Ag) in Theorems 4.1 and 4.2 which are

operators. The following result is useful in this respect.

Lemma 4.3. Let A apd A be relations from 91 to Ho and let B be a relation from $Ho
to 91, such that A C A C B*. Denote

X, =A0A, Xo:=B"0A X=X 0&X,,
and
X' = Px(B") s,

where Px is the orthogonal projection of $1 X Ho onto X. Then A is an operator if and
only if the following two items are satisfied:

(i) A is an operator ;
(i) X1 NnX' ={(0,0)} .

Proof. 1t is easily seen that
mul A = mul B* N (dom J12X2)J‘ ,

so that the conclusion follows. O
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Proposition 4.4. Let (A1, As) be a weakly Lagrangian pair in (91, H2), and let X; =
Bfe A;, i = 1,2. Assume that (ﬁl, ;{g) is a weakly Lagrangian pair extension of
(A1, A2) in (91, H2) with EZ- =A; ®Xq;, X1; CX;. Then gl and gg are both operators
if and only if the following two conditions are satisfied:

(1) Ay and Az are both operators;

(i) X1, N X! ={(0,0)}, where X| := Px,(B})o0, i = 1, 2.
Proof. Apply Lemma 4.3 successively with A := A;, A:=A; and B := B;. a
Corollary 4.5. If (A1, As) is a weakly Lagrangian pair in (1, $H2) with dom A; dense
in 9,1 =1, 2, then (A1, As) and every weakly Lagrangian pair extension of (A1, As) in
(91, H2) are pairs of operators.
Proof. Condition (ii) in Theorem 3.4 is trivially satisfied if B}, i = 1, 2 are operators.

From Theorem 3.4, this is the case if and only if dom A;, ¢ = 1, 2 are dense in $;, ¢ =
1, 2. O

A weakly Lagrangian pair (A1, As) in (91, 9H2) is said to be a weakly Lagrangian
densely defined pair if dom A; are dense in §);, ¢ = 1, 2. The next characterization of
the Lagrangian pair extensions of a weakly Lagrangian densely defined pair (A4, A3) in
(91, H2) follows from Proposition 4.2 and Corollary 4.5.

Proposition 4.6. A densely defined weakly Lagrangian pair (A1, As) in (91, H2) has a
Lagrangian pair extension (gl, ;{g) in (91, H2) if and only if the following conditions
are satisfied:

(1) X = Xy + Xy, a direct sum, where X; =ker (I + AfBf),i=1, 2;
(i) (Bj I &) L (B} [ Xy),i=1,2;
(iii) B} Xszle, ,i=1,2,i#7j;
(iv) | Azall; = ||B*04Hm ae Xy, i, j=12,1#7.

Proof. From Corollary 4.5 it follows that all Lagrangian pairs extensions (ﬁl, Zz) of

(Ay, As) are operators. Apply Theorem 4.2, and with X; = dom X;, Xy; = dom Xy,
Xy; = dom Xo;, it follows that

X = B;c qu Xgi = Bz* er?i? i k= 1, 2.
Clearly, X; = ker (I + AfB}). Condition (i) in Theorem 4.2 gives (i) and (ii) of this
result and (ii) in Theorem 4.2 implies the last statement describing (Kl, gg) Since
Xli = {(OL,BIO&), o€ XM}, 1= 1, 2,
XZZ:{(67B:</3)7/BEX2Z}7 7’:17 27

JinQi = {(Bz*ﬁa _ﬁ}a ﬁ S X2i}7 1= la 27 27.7 = 17 27
the condition dom X;; = dom J;;Xy; assures that a € A&j; if and only if o = B for
some 3 € Xy;. Then Afa = A B3 = —f3, which shows that

Jij Xoi = {(a, Afa), o € Xy;}.

Condition (iv) of Theorem 4.2 shows that the isometry V; of Xi; onto J;;Xs; implies
that ||A;k0[||l = ||B;O[||Z, (VA le. O

5. EXTENSION OF WEAKLY LAGRANGIAN PAIRS IN LARGER HILBERT SPACES

Let (A1, A2) be a weakly Lagrangian pair in (91, $2). It will be shown how the results
of Section 4 may be applied to investigate the Lagrangian pair extensions of (41, As) in

a pair of larger Hilbert spaces (51, 5;_)2), where 9; C 51, i=1, 2.
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Assume the weakly Lagrangian pair (A;, A2) with the isometries V; and V5, has a
Lagrangian pair extension (ﬁl, Zg) in (51, 52), with the isometries 171 and ‘72, where
5i =9, ® N, i = 1,2, are the orthogonal sums of the Hilbert spaces $; and $},
respectively. The Hilbert space 1 x 92 can be identified with (91 @ {0}) x (92 @ {0})
and 9% x H), can be identified with ({0} & H7) x ({0} & H5%) in 531 X §, and then (A1, As)
is identified with (A; & {(0,0)}, A2 & {(0,0)}). Then A; C A; as a subspace of $; X §;
and V; = V; | A;. Define the pair (A}, A}) as follows

A= {(hy)) € Ain (9] x )+ Vilaly)) €91 x 9}, 6 j =12 i#],
Note that (2, y}) € % £/ is identified with ((0,2}), (0,})) € 9 x 9,4, j =1, 2, i # j.

Let P; and P] be the orthogonal projections from $; x ; onto $; x $; and £ x .63»,
respectively, and, p; and p} be the orthogonal projections from 6, onto §; and 9Li=1,2,
respectively.

Theorem 5.1. Let (A1, As) be a weakly Lagrangian pair in (91, $H2) with the isometries
Vi and Va, and let (gl, gg) be a Lagrangian pair extension of (A1, As) in (51, 52)
with the isometries Vi and Vy. Then (A}, Ab) is a weakly Lagrangian pair in (9}, )
with the isometries V! :=V; | AL. Moreover, the following relations hold:

(5.1) A; C Ay A;CPACB:, i=12

and

(5.3) AL C A, A CPACB, i=1,2,

(5.4) B{CA;, B/CPA;CA;, i,j=12i#]j

Proof. Since V; = ‘71 I A; arid B; =V;A; C A} iicvfollows that B; = ‘7jAj - ‘7]11] = gf,
and hence B; = P;B; C P;A7. Now let (a,b) € A} and consider P;(a,b) = (p;a,pb). If
(x,y) € A; C A;, then
((pja,pib), (z,y)) = [pib,x]; — [pja, yl;
= [bz]; = [a,y];
= ((a,b),(z,y)) =0,
which shows that Pjg;‘ C Af. Similarly, if (¢,d) € A; and (o, B) € B; C gj, then
((pic,pid), (@, B)) = [psd; ol = [pic, Bl;
= [d.o]; —[e.f;
= ((&d),(a, 8)) =0,
which gives P,A; C Bf. Thus (5.1) and (5.2) are verified. Moreover, A}, i = 1,2
are closed relations. Indeed, if (z7,,y,) € A} and (z7,,y,) — (z/,y) € 9] x H’, then
(',y) € ,ZZ N (5’); X S’);-), since /L and 9] x .63» are closed. Now, the following inequality
1PV )l = IPVia'y') = PVi(a),, v
IPVi(a' =,y = o)l
I = 5,9 =yl

IN

(5.5)
shows that H‘Z(l”,y’) =0, or that ‘N/i(x’,y’) € 9; x 9%, and hence (2',y') € Aj.
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Let (y;,z}) € A} C Aj and let 2/ € dom A} C dom A; = dom ;1;‘7 with (z},y;) € /T;‘

Then

<(y;,x;),(a:;',p;y])> = [Z‘;,J);’]i - [y;ap_ljy_/}J
[:C;, x;I]j - [y;7 yj]j
= <(y§,$;),($gl,y])> 207
which implies (z7,p}y;) € A;*, and, in particular, dom A, C dom Ag*. Clearly, the pair
(A}, AL) with the isometries V; = Vi | Al i = 1,2, is a weakly Lagrangian pair in
(95, 9), and B} := V] A} is given by
B}:“%weﬁﬂwﬁxﬁﬁ:E*@yﬂﬂﬁx%}.

The inclusions (5.3) and (5.4) follow using similar arguments as for the proof of (5.1)
and (5.2), respectively. O

In general it can not be asserted that A} = A; N (95 x ), that is, for {a},9;} €
AN (9 x 35;) it is not possible to guarantee that ‘N/z(x;, Y;) € 9 x 9.

Clearly, Vi(al,yf) = (24,2)) € A3, and [4]2 = 512 = lpy2I12 + lp)2]1%. Since
P;As C Aj it follows for any (z;,y;) € A; that Pi(w;,2%) = (0,p;2}) € A}, and thus,
which implies p;2} € (dom Aj)l. Consequently, A, = A; N (.‘7); X 53;) if dom A; is dense
in f;,i=1,2

Define the subspaces Aj by

Af = {(%‘,yj) € A;n (9 x H;) - ‘Z‘(xiyyj) € $; X ﬁj}~

Then clearly (Af, AQL) is a weakly Lagrangian pair in (91, $2) with the isometries ‘Z [
A7, so that it is a weakly Lagrangian pair extension of (A;, Ag). If (4;, As) is a maximal
weakly Lagrangian pair in (91, $2), then 4; = A} and A4; = AN (9 x $;). Moreover,
if dom A} are dense in £}, then Aj = Zl N(H: x9H),i=1,2.

The next result gives a necessary condition for the existence of a Lagrangian pair

extension (Al,ﬁg) in (517 52)
Proposition 5.2. Let (A1, As) be a weakly Lagrangian pair in (1, H2), with the isome-
tries V1 and Vo, and suppose that (/L, ;{g) is a Lagrangian pair extension of (Aj, Ag)
mn (.%1, :‘52), with the isometries ‘71 and ‘72, where 51 =9, D 9N,. Then
(5.6) A =A;©C;, A =B;0D,
where C; = /L 04, Dj= Z}‘ © Bj and
(5.7) V,C; =D;, PC;CE;, PD;CEFj,
where E; = B © A;, Fj = A} © Bj. In particular,
dom C; = dom D,
and
p;dom C; = p;dom D; C dom E; N dom Ej.

Proof. Clearly,

Vi, = (Ez o Ai) =V, A; © ViA;
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If (x;,y;) € C; then (5.1) leads to P;(x;,y;) € PA; C By. Let (z14,y15) € Ai € $i X 9.
Then the identity
(Pi(@isyj)s (w10, v15)] = [(24,95), (214, 915)] = 0,
shows that P,C; C B © A; = F;. From (5.2) it follows that
P.D; = PViC; C Pig; C 47,
and using similar arguments as above it follows that P;D; C F};, completing the proof. [

Proposition 5.3. Let (A1, As) be a weakly Lagrangian pair in (91, H2) such that dom A;
is dense in 9;, 1 = 1, 2. With the notations from Proposition 5.2, assume that

(5.8) domE; Ndom F; = {0}, 4,j=1,2, i#j.
Then (A1, As) is a mazimal weakly Lagrangian pair in (91, H2). If (A1, As) is not a
Lagrangian pair, it has no Lagrangian pair extension in any 51, 5;)2 .
Proof. Assume (A;, Ay) has a weakly Lagrangian pair extension (Af, A;r) in (91, 92).
Then

A, CAFC(BH*CBfY, BicBf Cc(AhH)*CAr, i=1,2,

and thus Af, B, Bf and (B;")* are all operators. Using analogous notations as in
Proposition 5.2 it follows that

where dom C;r C dom Dj+. Thus
domC;r C domC;r N doij+ C dom E; Ndom F},

and (5.8) leads to dom C;t = {0}. Since C;" is an operator, C;* = {(0,0)}, proving
Af = A,
Assume now that (A4, As) has a Lagrangian pair extension (ﬁl, EQ) in (51, 52)

Since B and Aj are operators, E; and Fj are operators, and the relations (5.7) and
(5.8) lead to

pidom C; = p;dom D; = {0},
where C; and D; are as in Proposition 5.2. Then NPiCZ- C E; and P;D; C F; imply
that PZCl-N: PiD; = {(0,0)}. Therefore A7 C P;A%. Indeed, let (z;,y;) € A}, and
(aj,b;) € Aj. Then the decomposition

(a;,bi) = (a1, bri) + (a, B),

holds with (ai;,b1;) € A;j and (a, ) € C;. Clearly,

Pj(a, B) = (pje, piB) = (0,0),
so that

((aj, i), (zi,y;)) = (a1, b14), (i, 95)) =0,

showing that A* C PA%. Thus A* C P,A* = P,(B; @ D;) = By, for P;iD; = {(0,0)}.
Now B; C A; and therefore B; = A;f, which means that (A, As) has to be a Lagrangian
pair. If (A;, As) is not a Lagrangian pair, this contradiction shows that (A1, As) has no
Lagrangian pair extension in any 5%1 X 52. |

The purpose of the next part of this section is to describe the Lagrangian pair ex-
tensions in (5’)1, .‘7)2) of a weakly Lagrangian pair (41, As) in (91, $H2). For such

(ﬁl, /~12>, with the isometries V; and ‘72, consider (A}, A}) as in Theorem 5.1, and
define A1 = Al D A{L in :61 X ?Jj, by
Ai = {((93“332)7 (v5,v})) € 9% 9 (wi,y) € Ay, (25, y}) € Aé},
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and define the isometries V; := V; ® V/ on A;, where V; = Vi | A; and V! = Vil Al
Furthermore, define B; := V; A;.

Proposition 5.4. The pair (A1, As) is a weakly Lagrangian pair in (51, 52) with the
isometries V1 and V. Moreover, the following relations hold true:

(5.9) Af =A@ (A)*, Bi=B;® B!, B'=B'® (B,
(5.10) A CA, CB;, B CACAL

(5.11) & =BcA =E oE],

where E; = Bf © A; and E} = (B])* © Al,

(5.12) (B )oo = (B])oo & ((Bi)")oc;

(5.13) Pe, (B} )oo = Pr,(B])oc ® Pp;((Bf)") oo

where Pg, is the orthogonal projection from 51 X 5:32 onto &;, Pg, is the orthogonal
projection from $1 X 2 onto E; and Pg;: is the orthogonal projection from 9} X 9, onto
E!, respectively.
Proof. Clearly, A; = A; & A} implies that AF = AF & (A))*, and since (A4;, A2) and
(A}, AL) are weakly Lagrangian pairs in (91, 92) and (9%, $5%), respectively, it follows
that (A1, .As) is a weakly Lagrangian pair in (51, 52) with the isometries V; = V; [
A, =V;®V/ i=1, 2. Moreover,
Bj =ViA; = ViA; @ V] A, = B; ® B},

and therefore B} = B @ (B})*, proving (5.9).

The inclusion A; C A; implies A¥ C Aj. Also B; C A} since B; C A and B] C A}
and thus B; = B; ® B, C Z;" Then ﬁl C B}, and then (5.10) is verified. The relations

(5.11) and (5.12) follow directly from the definition of .4; and the last equality in (5.9).
Finally, (5.13) is easily verified from the definitions which are involved. O

Theorem 5.5. Let (Ay, As) be a weakly Lagrangian pair in (91, H2) with the isome-

tries V1 and Vy. Assume that (;11, /Tg) is a Lagrangian pair extension of (A1, As) in

(517 52) with the isometries ‘71 and 172 If A, =A; @ AL, & = Bf © A, as in Proposi-
tion 5.4, then there exists a decomposition

(5.14) & = &1 @ &gy

such that

(5.15) dom gli = dom (ingzj),

(5.16) A=A @ &y,

(5.17) V=V, oV,

where

(5.18) V, =V | A,

and V! is an isometry from E1; onto J;;E2; of the form

(5.19) Vi{ai, B} = {ai, B3}, 1185115 = 113511;-

Conversely, if (A}, AL) is a weakly Lagrangian pair in (97, 95) with the isometries V{
and V4, and V; =V, ®@ V!, i = 1, 2, are such that there exists a decomposition of €; as

in (5.14), and the pair (ﬁl, /L) with the isometries V; and Vs defined by (5.17)—(5.19),
then (Zl, gg) is a weakly Lagrangian pair extension of (Ay, As) in (517 52), which is

a Lagrangian pair extension of (A1, As).



LAGRANGIAN PAIRS 95

Furthermore, gl and gg are both operators if and only if A1 and As are both operators,
and

E1i N Pe, (B )oo = {(0,0)} .
Proof. A direct application of Theorem 4.2 and Lemma 4.3 leads to the statement of this

theorem. 0

The next result deals with the particular case when A} = Zl N (5 X H;).

Proposition 5.6. Let (A1, As) be a weakly Lagrangian pair in (91, 92), and let ( )

be a Lagrangian pair extension of (A1, As2) in (f)l, f_)g), where f)z HDi®H,i=1,2.
Then, A} = A; N (97 x 9%) if and only if the projection P; is one-to-one from E1; onto
P, i=1,2. If Ay = 4,0 (9], x $)), then

dim Ez/ < dim E;.

Similarly, A; = A; N (9; x %) if and only if P] is one-to-one from E1; onto Pj;E1;, and,
in this case

dim E; < dim E}.
Moreover, if A; = ﬁi N (i x 9H;) and A} = ﬁi N (9] x 5’)}), then
dim F; = dim EZ/ = dim &;; = dim &,;.

Proof. Assume A} = A; N () x 9}) and let (o, 3) € i, Pi(e, 3) = (0,0). Then
(o, B) = P!(a, B) € E.. Since A, and E! are orthogonal it follows that (a, 8) = (0,0),
showing Nthat P; is one-to-one on &;. Conversely, assume P; is one-to-one on &p;. Let
(a,b) € A;, Pi(a,b) = (0,0), that is

(a,b) € A; N (9 x 97).
Then

(a,0) = (z,y) + (u,v),
where (z,y) € A;, (u,v) € &4, and

(0,0) = Pi(a,b) = Pi(z,y) + Pi(u,v).
But, P;(z,y) € A;, P;(u,v) € P,€1; C E;, and A; orthogonal to E; imply that
Pi(z,y) = P;(u,v) = (0,0).

This implies (u,v) = (0,0), or

(z,y) = P/(z,y) € Aj,
that is

A0 (9] x 9)) € Al
Clearly, A, C KZ N (f)g X 5’);), and thus

Ap = A0 (9] x 9)).
Assume now that A} = /L N (Sﬁ; X .‘7);) Then P;&1; C &4, and, since P; is one-to-one on
&1, it follows that dim £1; = dim P;€y; < dim E;. Then

Ei=&:DEy=FE; 8 E,
and dim &£1; = dim Ey; (which follows from (5.15)) lead to
dim&; = dim E; + dim E, = 2dim &;; < 2dim E;,

or, dim E; < dim E;, as stated. The others statements have a similar proof. O

Corollary 5.7. If dom A; is dense in $);, then
Al =A; 0 (9 x 9)),
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P; is one-to-one on &1; and
dim E} < dim E;.

The next result identifies those Lagrangian pairs (Al, Zz) which are operators in the
case when dom A; is dense in $;, 1 =1, 2.

Proposition 5.8. Let (A1, A2) be a weakly Lagrangian pair in (91, H2), let (gl, ZQ) be
a Lagrangian pair extension of (A1, Aa) in (91, 9%), and assume that dom A; is dense

in 9;,1=1,2. Then Ay and As are both operators if and only if A} and A} are both
operators.

Proof. 1f A; is an operator then Al is an operator as well since A, C A;. Assume now
that A} and A} are both operators. Since dom A; is dense in $); it follows that B is an
operator and thus A; is an operator. Therefore A; is an operator. In order to show that
A; is an operator, let (o, 8) € £1; N Pe,(B})oo- Since
(Ov O) = Pl(aaﬁ) € P51i(B;)a
and P; is one-to-one on &; it follows that («, 8) = (0,0), showing that
&1 N Pg, (B} ) = (0,0),

which completes the proof. O

The operator version of Theorem 5.5 is now stated. Its proof follows immediately from
Theorem 5.5 Proposition 5.8.
Theorem 5.9. Let (A1, As) be a weakly Lagrangian densely defined pair in (1, H2).
Assume that (Zl, ﬁl) is a Lagrangian pair extension of (A1, As) in (51, 52), where
9 =m@e9n,. IfA = AN (9] x ), then (A}, Ab) is a weakly Lagrangian pair in
(91, 95). Let A; = A; @ AL, i =1,2. Then (A1, Aa) is a weakly Lagrangian operator
pair in (5%1, 52) such that

(5.20) A C A C B,

(5.21) & =BoA, =E;,®E],
where,

(5.22) E;=BfoA;, E,=B/"0cA,.
Moreover,

(1) & =1 @ Eai;

( 11) dom gli = dom in(S'Qj,'

(iii) P; is one-to-one from &; onto P;Ey; C Ey;;

( iV) A=A E;

(v) dim E! < dim E;;

(vi) There is an isometry Vyi; of E1; onto J;;Ea; of the form

Vida, 8} = {a, 8}, 1Bl = 18'];, a€domé&y,.

Conversely, assume for a given weakly Lagrangian pair (A1, As) that there exists a weakly
Lagrangian operator pair (A}, AY) in (9], 95) such that (5.20)-(5.22) are satisfied, and
the pair (;11, ;12) and the isometries Vy;, i = 1,2, ewxist, satisfying (i)—(vi). Then

(ﬁl, /~12> s a Lagrangian pair in (51, 52), and

A= A; 0 (9] x 9)).
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Remark 5.10. Assume that (A;, A3) is a maximal weakly Lagrangian operator pair in

Theorem 5.9. Then for any Lagrangian operator pair extension (Zl, gg) it follows that

Ai:gim(ﬁi X $;),
and Proposition 5.6 then implies that dim &; = dim E} = dim &;; = dim &;;.

6. A CLASS OF WEAKLY LAGRANGIAN PAIRS OF DIFFERENTIAL OPERATORS

Let $§ = L?(0,1) and let D, be the space of all absolutely continuous functions f on
the interval 0 < 2 < 1 satisfying the condition f(0) = f(1), and such that its derivative
/' is also an element of §. Clearly, Dg is a dense subspace of §). Define two (linear)
operators Ajp, 1 < j < 2in § by dom A9 = dom Ayg = Dy and

Ajof =Ljof ==Q;f +a;f, f€Do,
where Q; and a;, 1 < j < 2 are some non-zero complex numbers which satisfy the
following conditions
] =[], |a|=la], QajeR, 1<;j<2
Let DF be the set of all absolutely continuous continuous functions on the interval
0 <z <1 such that f' € $. It is now easily seen that the operators Aj, and A%, have
the domains given by dom A}, = dom A%, = D& and are defined by
Asf=LTf:=-Q;f +a;f, feDj, 1<j<2
From now on the indices j and k will run from 1 to 2 and are different whenever they

appear in the same sentence. Since [|A;f|| = [|A}f| for all f € D it follows that the
operators Vig : A9 — A%y and Voo : Asg — Ay, defined by

Vio(f, Liof) = (f, L3y),  Veo(f, Laof) = (f, LTy), f€ Do

are two isometries. Therefore the pair (Ajg, A2o) is a densely defined weakly Lagrangian
pair in (£, $). Furthermore, the corresponding operators By and Bag are defined on Dg
and are given by

Biof =L3yf, Baof=Lif, [e€Do,
while their adjoints B}, and Bj, are defined on ® and are given by
Biof = Laof, Bsof =Liwf, [feDg.
Let $g be a finite-dimensional subspace of §) and define the operators A; and As to be

the restrictions of A9 and Asg to dom A7 = dom Ay = :=DgN 353-. Thus, A1 C Ajg,
Ay C AQO7 so that

(6.1) Ajy C Al Aj, C Al
Furthermore,
mul A} = (dom A;)* = clos (D5 F 9Ho),

which implies that
(6.2) Ho Cmul A7, 1<5 <2
It follows from (6.1) and (6.2) that

A5 F ({0} x o) C A, 1<j<2.
Using similar arguments as in [5] it can be shown that in fact there is equality in the
above inclusions, namely,
(6.3) A; = A% ¥ (A7)oo,  (Af)oo := {0} X 9.
Furthermore, the single-valued part of A7 is given by

(A7)sf = Ap;f — PoAg,f, fé€ ©8La
where P is the orthogonal projection of § onto $)o. Indeed, let (f,g) € (A})s, so that
(f,9) = (f, Ajof + ), for some ¢ € $Ho, and (f,g) is orthogonal to (0,7) for all ¥ € Ho,
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that is

[A;Of + ¥, 7/)] = 07
for all ¢ € 0, or p = —FyAj,f.

Consider V7 and V5 the restrictions of Vg and V5o to A; and As, respectively. There-
fore, the pair (Aj, As) is now a (non-densely defined) Lagrangian pair in ($),$). It is
clear that the corresponding operators By and Bs are the restrictions of By and By to
©. Moreover,

mul B}, = (dom By,)* = (dom A4;)* = mul A7 = 9o,
and
(6.4) Bi = Bio +(Bi)ee,  (Bi)sf = Biof — PoBiof, [ €Dg,
where (B})oo = (4])oe = {0} X $Ho.
Remark 6.1. The fact that A; C B}, and A; and (A})s are operators does not necessarily
imply that A; C (B;‘)S Indeed, let $Hy be the one-dimensional space spanned by the
function (x) = z forall0 <z < 1. Assume that A; C (BJ)s, so that ran A; C ran (B5)s,
or
Ry = (ran A;)* D (ran(B;-‘)s)J‘ D $Ho.

Thus, ¢ € R = ker A7, or by (6.3)

Ajop = =@’ + a0 = —bje,
for some complex constant b;. Since

—¢ +ap +bjo = —Q; + (@ + bj)w
is not the zero function it follows that the assumption is false. Thus, A; ¢ (B} )s.
Define now the subspaces X; = B; © A; and Y; = A7 © B;. Since
_ nx* 1 _ px* *

X; = BiN A+ = BI 0 Jj, AL
it follows that (f;,g;) € X; if and only if (f;,g;) € B; and (g;, —f;) € A}. Furthermore,
(6.3) and (6.4) imply that (f;, g;) € X; if and only if f; € dom B} = D7, g; € dom A7 =
@3‘, and
(6.5) 9 =Lifi—¢;, —fi=L g —v;
for some @, ¥; € $o. This system of equations has a solution for every pair (¢;, ;) €
$o x Ho. When ¢; = 1p; = 0 the pair (f;, g;) satisfies the system

9i=1Ljfj, —f =1Ly

and hence f; and g; are solutions of the same second order differential equation

(LT Ly + Nu = =0;Qu" + (1 + |a;|*) = 0.
It follows that

dim X; = 2 4 2dim §¢ = dim Y}
and Y; = J;; X is the set of all (f;, g;) such that f;, g; € Df and
9; =Lj fj —wj —fi=Ljgj — b,

for some ¢;, ¥; € H. Applying Theorem 4.2, the Lagrangian extensions (Zl, Zg) of

(A1, As) in ($, 9) will be next described. In fact le =A; & Xy, where X; = X3; & Xy;
with dim X;; = dim Xy; = 1 + dim g, and dom X;; = dom J; X2, and there are two
isometries V; = V; & Vj’, 1 <7 <2, where Vj’ is an isometry from X, onto Jy; Xax of
the form

Vilaj,8;) = (a;,8;), 1851l = [I3;]l-
Here, Vj is the isometry of A; onto By, given by
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Since Ej = B} © Xy; it follows that Ej can be described as the set of all (f;,g;) € Bj
such that

(6.6) 95 5] = [f5.8;] = 0,
for all (o, 8;) € Jj1X1;. Since B = B, T ({0} x $) it follows that the pairs (f;, g;)
and (aj, 8;) can be expressed by
(Fir95) = (Fis Lifi + ), (ay,85) = (e, LT aj + x5),

with f; € @3’, a; € dom Jj,Xoj, and for some elements 95, x; € Ho. The condition
(6.6) may then be written as
(6.7) (fiog)i + [, 5] = [f5x31 = 0,
where

(fias); = [Lif 5] = [f5, L o] = Qe (1) £5(1) — a;(0) £5(0)].
In (6.7) are in fact 1 + dim ¢ independent boundary-integral conditions specifying the
elements of A;.

Assume now that dim$y = 1 and that $ is spanned by a function ¢ € $ with
llpll = 1. Then in the above ¥, = c;p, x; = d;¢ for some complex constants ¢; and d,.
Let (Otlj, Lj_alj + du(p), (Oégj, L;'_Oézj + dgjgﬁ) be a basis for the Subspace ijXQj. Then
(6.7) is equivalent to the following equations

(6.8) (fioug); + cjlo, aig] — diglfj, 0] =0, 1<1<2,

for (f;,Ljf; +cjo) € Aj. Since (/Nlj)oo C (B})oo = {0} x $9 it follows that gj is not an
operator if and only if (0, ) € gj, and using (6.8) it follows that this is the case if and
only if
(6.9) [0, 1] = [ip; 25] = 0,
that is ¢ € dom (Jj;Xa;)" = dom (X1;)+. Therefore, two cases have to be considered:
A. A, is an operator and, for instance, [, a1,] # 0;
B. A, is not an operator, and (6.9) holds true.

In the first case it follows from (6.8) that ¢; can be uniquely obtained, and then Ej
can be specified as the set of all pairs (f;, L, f; + ¢cjp) € B, such that the following
relations hold:

1
(fjaj); + [fj.dje] =0, ¢;=

[@7041]']

(If, djel = (ficns)s)
where
a; = [y, plag; — [ag;, plary,  dj = [agg, pldiy — [ong, @lda;.
In the latter case, namely B, it follows that [f;, ¢] = 0 for all f; € dom Ej, since
(dom A;)* = mul Z;‘ = mul 4; = §,

and this relation can be used in (6.8) to obtain g]— as the set of all pairs (f;, L; f;+c¢;p) €

By, satisfying the following relation

(6.10) (fjonj); =0, (fjaz;); =0, [fj,¢]=0.

It is easily seen that the second condition in (6.10) is superfluous, and thus (f;, L; f;+c;j¢)
is an element of A; if and only if

(6.11) (fion;); =0, [fi,¢]l =0, f; €D,

and c; is a complex number. The single-valued parts of gl and Zg, namely (111)5 and
(Az)s determine a densely defined Lagrangian pair in (g, 97 ), and it is specified by the
boundary-integral conditions (6.11) and

(Aj)sfj = Lifi — (Lifj0)p, 1<j<2.
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Notice that since a; € dom X;; C dom Zj it follows that o  is a function satisfying

(arjonz); = Q5 (Jaa; (1) — [e;(0)]?) =0.

Hence, a1;(0) = 61;a1,(1), where |611] = |#12| = 1, and the conditions in (6.11) become

10.
11.
12.
13.
14.
15.
16.

17.

18.

80

fi(1) =01;£;00), [fj,e]=0 forall f;eDf.
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