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LAGRANGIAN PAIRS IN HILBERT SPACES

ADRIAN SANDOVICI

Abstract. Weakly Lagrangian pairs and Lagrangian pairs in a pair of Hilbert spaces
(H1, H2) are defined. The weakly Lagrangian pair and Lagrangian pair extensions in
(H1, H2) of a given weakly Lagrangian pair in (H1, H2) are characterized and those
extensions which are operators are identified. A description of all Lagrangian pair

extensions in a larger pair of Hilbert spaces (eH1, eH2) of a given weakly Lagrangian
pair in (H1, H2) is also given.

1. Introduction

Let A1 and A2 be two (not necessarily densely defined) operators in a Hilbert space
H and assume that U is a unitary operator in H which commutes with A1 and that A2 is
a restriction of the (linear) relation U∗A∗1. Using the language of (linear) relations this
assumption can be written as

UA1 = A1U, A2 ⊂ U∗A∗1,

where the operator and its graph are identified. Let V1 and V2 be two operators from
(the graph of) A1 to (the graph of) A∗2 and from (the graph of) A2 to (the graph of) A∗1,
which are defined as follows

V1(x,A1x) = (x,UA1x), V2(y,A2y) = (y, UA2y), x ∈ domA1, y ∈ domA2,

so that V1 and V2 are isometric operators.
The above situation can be described in a general scheme using the concept of weakly

Lagrangian pair in a pair of Hilbert spaces. This concept is the subject of the paper and
is introduced as follows. Let H1, H2 be two Hilbert spaces and let A1 and A2 be two
relations from H1 to H2 and from H2 to H1, respectively. The pair (A1, A2) is said to be
a weakly dual pair in the pair of Hilbert spaces (H1, H2), if the following inclusions hold

domA1 ⊆ domA∗2 and domA2 ⊆ domA∗1.(1.1)

The pair (A1, A2) is said to be a dual pair if A1 ⊆ A∗2, cf. [13, 14]. Furthermore, a weakly
dual pair is said to be a weakly Lagrangian pair if there are two isometries, V1 : A1 → A∗2
and V2 : A2 → A∗1 of the form

V1(x1, x2) = (x1, x
′
2), (x1, x2) ∈ A1, ‖x2‖2 = ‖x′2‖2,

and

V2(y2, y1) = (y2, y′1), (y2, y1) ∈ A2, ‖y1‖1 = ‖y′1‖1.

By definition, a Lagrangian pair is a weakly Lagrangian pair with

domA1 = domA∗2 and domA2 = domA∗1,(1.2)

and whose isometries V1 and V2 are from A1 onto A∗2 and from A2 onto A∗1, so that

V1A1 = A∗2 and V2A2 = A∗1.

When H1 = H2 and A1 = A2, a weakly Lagrangian pair becomes a formally normal
relation, a notion which has been introduced by E. A. Coddington in [5]. Clearly, dual
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pairs and formally normal subspaces are particular cases of weakly Lagrangian pairs.
Therefore, a densely defined formally normal operator N in a Hilbert space H gives the
weakly Lagrangian pair (N,N) in (H, H) with the isometries V1 = V2 =: V given by

V (x,Nx) = (x,N∗x), x ∈ domN,

cf. [5]. Furthermore, a normal operator Ñ in a Hilbert space H determines the Lagrangian
pair

(
Ñ , Ñ

)
, cf. [3, 5].

Recently, the theory of dual pairs in Hilbert spaces has been developed by M. M. Mala-
mud and V. I. Mogilevskii (see [13, 14]). Their treatment is mainly based on the con-
cepts of boundary triplets and the Krein formula. In the present paper the duality of
two relations in Hilbert spaces is reconsidered in order to study both dual pairs and
formally normal subspaces. Some algebraic descriptions of weakly Lagrangian pairs and
Lagrangian pairs extensions of a given weakly Lagrangian pair are proposed. The main
results of this paper are parallel with the ones in [5] and complete the theory of dual pair
of relations proposed by Malamud and Mogilevskii.

The so-called Dirac structure on a linear space has been introduced by T. J. Courant
in [6], and both geometrical and functional analysis approaches on finite-dimensional
differentiable manifolds or on Hilbert spaces have been developed, cf. [7, 16, 17, 18]. In
fact a Dirac structure is a relation in a Hilbert space H such that A = −A∗, so that
it can be viewed as a particular Lagrangian pair. An approach to joint semi-normality
based on the theory of Dirac and Laplace operators on a Dirac vector bundle has been
developed in [15]. Using the concepts introduced in this paper, the theories proposed in
the above mentioned references might be extended in order to develop new theories in
geometry, physics and engineering.

The organization of the paper is as follows. In Section 2 some general facts concerning
relations from a Hilbert space H1 to a Hilbert space H2 are presented. In Section 3
the notions of weakly Lagrangian pair and Lagrangian pair in (H1, H2) are analyzed.
Section 4 gives a complete description of all weakly Lagrangian pairs and Lagrangian
pairs extensions in (H1, H2) of a weakly Lagrangian pair in (H1, H2). Those extensions
which are (graphs of) operators are explicitly characterized. This result contains the
description of all Lagrangian pair extensions of a given densely defined weakly Lagrangian
pair. Section 5 is devoted to a study of the weakly Lagrangian pair extensions in larger
Hilbert spaces. In particular, Proposition 5.3 shows that a weakly Lagrangian pair need
not have Lagrangian pair extensions in any larger pair of Hilbert spaces. The description
of the possible Lagrangian pair extensions in a larger pair of Hilbert spaces of a weakly
Lagrangian pair is also given. Finally, the last section contains an example of a weakly
Lagrangian pair of differential operators.

2. Preliminaries

Let Hi, i = 1, 2, be two Hilbert spaces with the inner products denoted by [·, ·]i,
i = 1, 2, and with the corresponding norms denoted by ‖ · ‖i, i = 1, 2, respectively. A
typical element of the Cartesian product H1 × H2 is an ordered pair (f1, f2), fi ∈ Hi,
i = 1, 2. A relation A from H1 to H2, is by definition the linear subspace A of the Hilbert
space H1 × H2. The domain and the kernel of A are linear subspaces of H1 which are
denoted by domA and ker A, and are defined by

domA := {f1 : (f1, f2) ∈ A} , ker A := {f1 : (f1, 0) ∈ A} ,

while the range and the multivalued part of A are linear subspaces of H2 which are
denoted by ranA and mulA, and are defined by

ranA := {f2 : (f1, f2) ∈ A} , mulA := {f2 : (0, f2) ∈ A} .
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A relation A is (the graph of) an operator precisely when mulA = {0}. The inverse of
A, is the relation A−1 from H2 to H1 defined by

A−1 = {(f2, f1) : (f1, f2) ∈ A} .

Clearly, domA−1 = ranA and ker A−1 = mulA.
A relation A is closed if it is closed as a subspace of H1×H2, in which case ker A and

mulA are closed subspaces of H1 and H2, respectively. The adjoint A∗ of a relation A is
the closed relation given by

A∗ = {(f2, f1) ∈ H2 × H1 : 〈(f2, f1), (g1, g2)〉 = 0 for all (g1, g2) ∈ A} ,

where

〈(f2, f1), (g1, g2)〉 = [f1, g1]1 − [f2, g2]2,

with (f1, f2), (g1, g2) ∈ H1 × H2.
An important tool in the theory of relations in Hilbert spaces is the operator J12

defined on all of H1 × H2 into H2 × H1 as follows

J12(f1, f2) = (f2,−f1), (f1, f2) ∈ H1 × H2.

Similarly, the operator J21 can be defined on all of H2 × H1 into H1 × H2, so that
J21J12 = −IH1×H2 and J12J21 = −IH2×H1 . Furthermore, if A is a relation from H1 to
H2, then it is easily checked that

A∗ = (H2 × H1)	 (J12A) = (J12A)⊥ = J12(A⊥).

Finally, if A ⊂ B are two closed relations from H1 to H2 then

J12 (B 	A) = A∗ 	B∗.(2.1)

Let A be a closed relation from H1 to H2. Define the closed relation A∞ to be the
set of all elements of the form (0, f2) in A, and let As := A 	 A∞. Then As is a closed
operator from H1 to H2 with domAs = domA. The following result describes some
simple facts about As and A∞, which were noted for instance in [1].

Lemma 2.1. Let Hi, i = 1, 2 be two Hilbert spaces. If A is a closed relation from H1 to
H2, then

( i ) mulA = (domA∗)⊥;
( ii ) domAs = domA is dense in (mulA∗)⊥;
( iii ) ranAs ⊂ (mulA)⊥.

An object is said to be maximal if it is maximal with respect to the operation of
inclusion of sets in the class of sets in which it is included. The formal identification
of an operator with its graph is implicitly assumed, so that an operator is viewed as a
relation and a maximal object will be maximal in the sense of relations. Throughout the
paper, assume that the relations (operators) which are involved are closed.

3. Weakly Lagrangian pairs in Hilbert spaces

Let (A1, A2) be a weakly Lagrangian pair in (H1, H2). Define the relations B1 and
B2 as follows

B1 := V2A2, B2 := V1A1.

Then domB1 = domA2, domB2 = domA1, and V1, V2 take A1 onto B2 and A2 onto B1,
respectively, in a one to one way. Since Bi ⊆ A∗i , i = 1, 2, it follows that Ai ⊆ B∗i , i =
1, 2, which implies

domB1 = domA2 ⊂ domA∗1, domB2 = domA1 ⊂ domA∗2.(3.1)

Thus (B1, B2) can be viewed as a weakly Lagrangian pair with isometries V −1
2 and V −1

1 ,
respectively. Next, a simple non-trivial example is stated.
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Example 3.1. Let H1 and H2 be two unitarily equivalent Hilbert spaces and let H :=
H1 ⊕ H2 be their orthogonal sum. Assume that A11 : H1 → H1 and A21 : H1 → H2 are
two bounded everywhere defined operators. Furthermore, consider U , V , W and T four
unitary operators from H1 to H2. Define on H the following two (non-densely defined)
operators by

A1 :=
(
A11

A21

)
, A2 :=

(
A∗21U
V A∗11

)
,(3.2)

with domA1 = domA2 = H1. Furthermore, their adjoints are two (proper) linear
relations in H given by

A∗1 =
{ ((

h1

h2

)
,

(
A∗11h1 +A∗21h2

β

))
: h1 ∈ H1, h2, β ∈ H2

}
,(3.3)

and

A∗2 =
{ ((

h1

h2

)
,

(
U−1A21h1 +A11V

−1h2

β

))
: h1 ∈ H1, h2, β ∈ H2

}
.(3.4)

Clearly, domA∗1 = domA∗2 = H and mulA∗1 = mulA∗2 = H2. Define the linear operator
V1 from A1 to A∗2 by

V1

((
h1

0

)
,

(
A11h1

A21h1

))
=

((
h1

0

)
,

(
U−1A21h1

TA11h1

))
, for allh1 ∈ H1,

and the linear operator V2 from A2 to A∗1 by

V2

((
h1

0

)
,

(
A∗21Uh1

V A∗11h1

))
=

((
h1

0

)
,

(
A∗11h1

WA∗21Uh1

))
, for allh1 ∈ H1.

It is easily seen that V1 and V2 are two isometries and that domA1 ⊂ domA∗2, and
domA2 ⊂ domA∗1, so that the pair (A1, A2) is a weakly Lagrangian pair in (H,H) which,
in general, is not reducible neither to a dual pair nor to a formally normal relation as
the next result shows.

Lemma 3.2. Let A1 and A2 be the linear operators given by (3.2).
( i) The pair (A1, A2) is reducible to a dual pair if and only if A21 = UA11;
( ii) The pair (A1, A2) is reducible to a formally normal relation if and only if A21 =

UA∗11 = V A∗11.

Proof. (i) Clearly, (A1, A2) is reducible to a dual pair if and only if A1 ⊂ A∗2, equivalently
A21 = UA11.

(ii) Furthermore, (A1, A2) is reducible to a formally normal relation if and only if
A1 = A2, equivalently A21 = UA∗11 = V A∗11. �

A deep study of this example, involving the notion of boundary triplets adapted to
the case of weakly Lagrangian pairs, will be done elsewhere.

In the paper i and j are mainly used in order to denote the indices of the Hilbert
spaces H1 and H2, and the indices of the relations A1 and A2. They run from 1 to 2,
such that i 6= j, and, this fact is not mentioned whenever it is obvious.

The following result shows the behavior of a weakly Lagrangian pair with respect to
the decomposition of a relation in its operator part and its multivalued part.

Lemma 3.3. If (A1, A2) is a weakly Lagrangian pair in (H1, H2), then

V1 (A1)s = (V1A1)s = (B2)s , V2 (A2)s = (V2A2)s = (B1)s ,(3.5)

and

V1 (A1)∞ = (V1A1)∞ = (B2)∞ , V2 (A2)∞ = (V2A2)∞ = (B1)∞ .(3.6)

Proof. Since A1 and A2 are closed relations it follows that Ai = (Ai)s ⊕ (Ai)∞, i = 1, 2.
As it can be easily verified, Vi, i = 1, 2, preserve the inner products, so that (3.5) and
(3.6) follow. �



86 ADRIAN SANDOVICI

Theorem 3.4. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2) with the isometries
V1 and V2. Then

(i ) (A1, A2) is a Lagrangian pair if and only if Ai = B∗i , i = 1, 2.
(ii ) If A0i, i = 1, 2, are closed subspaces of Ai, i = 1, 2, then (A01, A02) is a weakly

Lagrangian pair with the isometries V0i := Vi � Ai, i = 1, 2.
(iii ) A1 and A2 are both operators if and only if one of the following equivalent con-

ditions are verified:
(a) B2 and B1 are both operators;
(b) domA∗2 and domA∗1 are dense in H1 and H2, respectively;
(c) domB∗1 and domB∗2 are dense in H1 and H2, respectively.

(iv ) A∗2 and A∗1 are both operators if and only if one of the following equivalent con-
ditions are verified:
(a) B∗1 and B∗2 are both operators;
(b) domA1 and domA2 are dense in H1 and H2, respectively.

Proof. Let i, j = 1, 2, i 6= j. Clearly, {A1, A2} is a Lagrangian pair if and only if
Bi = A∗i , i = 1, 2. Then, it is a Lagrangian pair if and only if Ai = B∗i , i = 1, 2, which
means that (i) holds. If A0i ⊆ Ai, then A∗i ⊆ A∗0i, and

ViA0i = B0j ⊆ ViAi = Bj ⊆ A∗j ⊂ A∗0j .

Thus domA0i = domB0j ⊆ domA∗j , and V0i are isometries of A0i onto V0iA0i = B0j ⊆
A∗0j , so that (ii) follows. Furthermore, {0, yj} ∈ Ai if and only if Vi{0, yj} = {0, y′j} ∈ Bj

for some y′j such that ‖yj‖j = ‖y′j‖j . Thus (domA∗i )
⊥ = mulAi = {0} if and only if(

domB∗j
)⊥ = mulBj = {0}, which leads to (iii). Finally,

mulA∗i = (domAi)
⊥ = mulB∗j .

Then A∗2 and A∗1 are both operators if and only if B∗1 and B∗2 are both operators, or,
equivalently, domA1 = domB2 and domA2 = domB1 are dense in H1 and H2, respec-
tively. The proof is now complete. �

Corollary 3.5. Let (A1, A2) be a weakly Lagrangian pair in (H1,H2). Then both

((A1)s, (A2)s) and ((A1)∞, (A2)∞)

are weakly Lagrangian pairs in (H1,H2).

Proof. A simple application of Lemma 3.3 and Theorem 3.4 leads to the statement of
this result. �

Let Ki := (mulAi)
⊥, i = 1, 2. Since dom (Ai)s is dense in (mulA∗i )

⊥ and ran (Ai)s ⊆
(mulAi)

⊥ it follows that

(Ai)s ⊆ (mulA∗i )
⊥ × (mulAi)

⊥
,(3.7)

and similarly

(A∗i )s ⊆ (mulAi)
⊥ × (mulA∗i )

⊥
.(3.8)

The relation domAi ⊆ domA∗j leads to

(mulA∗i )
⊥ ⊆ (mulAj)

⊥
.(3.9)

It is easily seen from (3.7)-(3.9), that

(Ai)s ⊆ Kj × Ki, (A∗i )s ⊆ Ki × Kj .

Denote (Ai)σ := (Ai)s ∩ (Kj × Ki). A natural question is when ((A1)σ, (A2)σ) is weakly
Lagrangian in (K2, K1). The key of the answer is given by (Ai)⊗σ , which denotes the
adjoint of (Ai)s, viewed as a relation from Ki to Kj . The next result gives an “estimation”
of (Ai)⊗σ .
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Lemma 3.6. If (A1, A2) is a weakly Lagrangian pair in (H1, H2) then

(A∗i )s ⊆ (Ai)⊗σ ⊂ A∗i .(3.10)

Proof. Let (x, y) ∈ (A∗i )s ⊆ A∗i . Then, (x, y) ∈ Ki × Kj and

〈(x, y), (a, b)〉 = 0,(3.11)

for all (a, b) ∈ Ai. In particular this is true for all (a, b) ∈ (Ai)σ. Thus (x, y) ∈ (Ai)⊗σ , and
the first inclusion is established. Assume now that (x, y) ∈ (Ai)⊗σ . Then (x, y) ∈ Ki ×Kj

and (3.11) holds for all (a, b) ∈ (Ai)σ. Each (a, b) ∈ Ai can be written as

(a, b) = (a, b1) + (0, b2),(3.12)

with (a, b1) ∈ (Ai)σ, and (0, b2) ∈ (Ai)∞. Then clearly

〈(x, y), (a, b)〉 = [y, a]Kj
− [x, b1]Ki

− [x, b2]Ki

= [y, a]Kj
− [x, b1]Ki

= 〈(x, y), (a, b1)〉 = 0,

for all (a, b) ∈ Ai, which implies that (x, y) ∈ A∗i , concluding the proof of the lemma. �

Remark 3.7. A direct consequence of Lemma 3.6 is that dom (Ai)σ ⊆ dom (Aj)⊗σ since

dom (Ai)σ = dom (Ai)s = domAi ⊆ domA∗j = dom
(
A∗j

)
s
⊆ dom (Aj)⊗σ .(3.13)

Moreover, there exists a natural isometry for (Ai)σ: it is the isometry Vi restricted to
(Ai)σ, so that

Vi(Ai)σ = Vi(Ai)s = (Bj)s.

Since (Bj)s ⊆ A∗j , it is known that if (x, y) ∈ (Bj)s then 〈(x, y), (a, b)〉 = 0 for all (a, b) ∈
(Ai)σ. However, the inclusion Vi(Ai)σ ⊆ (Aj)⊗σ does not necessarily hold; although
x ∈ domAi ∈ Kj , it is not known that y ∈ Ki. No such problem arises in the case of a
Lagrangian pair, as the following result shows.

Proposition 3.8. Let (A1, A2) be a Lagrangian pair in (H1, H2). Then
( i) (Aj)∞ = (A∗i )∞ ;
( ii) ((A1)σ, (A2)σ) is a Lagrangian pair in (K2, K1), whose components are densely

defined operators. Moreover,

(Ai)⊗σ = (A∗i )s .

Proof. Clearly,

mulA∗j = (domAj)
⊥ = (domA∗i )

⊥ = mulAi,

which gives (i). Also, dom (Ai)σ = domAi = domA∗j is dense in Ki, and (3.13) now
implies that dom (Ai)σ = dom (Aj)⊗σ . From Lemma 3.6 it is known that

(A∗i )s ⊆ (Ai)⊗σ .(3.14)

Furthermore, the following two relations

(Ai)⊗σ ⊆ ((A∗i )s ⊕ (A∗i )∞) ∩ (Ki × Kj) ,

and

(A∗i )∞ = (Aj)∞,

imply that (A∗i )∞ is orthogonal to Ki × Kj , and

(Ai)⊗σ ⊆ (A∗i )s ∩ (Ki × Kj) = (A∗i )s .(3.15)

Now, the relations (3.14) and (3.15) lead to the identity (Ai)⊗σ = (A∗i )s. The isometry
(Vi)σ for (Ai)σ, defined by

(Vi)σ = Vi � (Ai)σ = Vi � (Ai)s,

is such that

Vi(Ai)σ = Vi(Ai)s =
(
A∗j

)
s

= (Aj)⊗σ .

Therefore (Vi)σ is an isometry of (Ai)σ onto (Aj)⊗σ . The proof is now complete. �
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4. Lagrangian extensions of a weakly Lagrangian pair

Assume that (A1, A2) is a weakly Lagrangian pair in (H1, H2) and let
(
Ã1, Ã2

)
be

a weakly Lagrangian extension of (A1, A2). It is the purpose of this section to give
an algebraic characterization of all such extensions. If Ṽ1 and Ṽ2 are the isometries for(
Ã1, Ã2

)
, then the isometries V1 and V2 for (A1, A2) are Vi = Ṽi � Ai, i = 1, 2. The

following relation

Bj = ViAi = ṼiAi ⊆ ṼiÃi = B̃j , i, j = 1, 2, i 6= j,

holds, and thus

Ai ⊆ Ãi ⊆ B̃∗i ⊆ B∗i , i = 1, 2.

In particular,

Ai ⊆ Ãi ⊆ B∗i , Bi ⊆ Ã∗i ⊆ A∗i , i = 1, 2.

This implies that Ãi = Ai ⊕ Ci, where Ci := Ãi 	 Ai is a subspace of B∗i , which added
orthogonally to Ai, give rise to weakly Lagrangian extension

(
Ã1, Ã2

)
of (A1, A2).

The next result gives a purely algebraic characterization of all weakly Lagrangian pair
extensions of a weakly Lagrangian pair.

Theorem 4.1. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2) with the isometries
V1 and V2, and let Xi := B∗i 	 Ai, i = 1, 2. Then

(
Ã1, Ã2

)
is a weakly Lagrangian

pair extension of (A1, A2) in (H1, H2) with the isometries Ṽ1 and Ṽ2 if and only if the
following items are valid:

( i) Xi = X1i ⊕X2i , i = 1, 2;
( ii) Ãi = Ai ⊕X1i , i = 1, 2;
( iii) domX1i ⊆ dom (JjiX2j), i, j = 1, 2, i 6= j;
( iv) Ṽi = Vi ⊕ V ′i , where V ′i is an isometry of X1i into JjiX2j of the form

V ′i (ϕ,ψ) = (ϕ,ψ′), ‖ψ‖j = ‖ψ′‖j , i, j = 1, 2, i 6= j.

Proof. Assume that (A1, A2) is a weakly Lagrangian pair with the isometries V1 and
V2 and

(
Ã1, Ã2

)
is a weakly Lagrangian pair extension with the isometries Ṽ1 and Ṽ2,

respectively. Thus Vi = Ṽi � Ai, i = 1, 2. Clearly, withX1i := Ãi	Ai andX2i := B∗i 	Ãi,
the items (i) and (ii) are valid. Moreover, for i, j = 1, 2, i 6= j,

ṼiX1i = Ṽi(Ãi 	Ai) = ṼiÃi 	 ṼiAi

= ṼiÃi 	 ViAi = B̃j 	Bj

⊆ Ã∗j 	Bj = Jji(B∗j 	 Ãj) = JjiX2j .

Thus domX1i = dom ṼiX1i ⊆ dom JjiX2j , proving (iii). If V ′i := Ṽi � X1i then clearly
V ′i satisfies the conditions in (iv).

For the converse implication, assume that Xi can be decomposed as an orthogonal sum
as in (i), and

(
Ã1, Ã2

)
is defined by (ii), with X1i and X2i satisfying (iii) and (iv). It

will be shown that
(
Ã1, Ã2

)
is a weakly Lagrangian pair extension of (A1, A2). Clearly,

Ai ⊆ Ãi ⊆ B∗i and consequently Bi ⊆ Ã∗i ⊆ A∗i . Moreover, X2i = B∗i 	 Ãi = Xi 	X1i

and using (2.1) it follows that Ã∗i = Bi⊕JijX2i. By (iii), the relations domAi = domBj

and domX1i ⊆ dom JjiX2j lead to

dom Ãi = domAi + domX1i ⊆ domBj + dom JjiX2j = dom Ã∗j ,

where the sums are algebraic ones. Consequently, dom Ãi ⊆ dom Ã∗j . Now Ṽi := Vi ⊕ V ′i

maps Ãi isometrically into Ã∗j in the prescribed manner, and thus
(
Ã1, Ã2

)
is a weakly
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Lagrangian pair with isometries Ṽi, i = 1, 2, and, since Vi = Ṽi � Ai it follows that(
Ã1, Ã2

)
is a weakly Lagrangian extension of (A1, A2). �

The next result describes those weakly Lagrangian pair extensions
(
Ã1, Ã2

)
of a

weakly Lagrangian pair (A1, A2) which are Lagrangian pairs.

Theorem 4.2. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2) with the isometries
V1 and V2 and let Xi := B∗i 	Ai, i = 1, 2. Then

(
Ã1, Ã2

)
is a Lagrangian pair extension

of (A1, A2) in (H1, H2) with the isometries Ṽ1 and Ṽ2 if and only if the following items
are valid:

( i) Xi = X1i ⊕X2i, i = 1, 2;
( ii) Ãi = Ai ⊕X1i, i = 1, 2;
( iii) domX1i = dom (JjiX2j), i, j = 1, 2, i 6= j;
( iv) Ṽi = Vi ⊕ V ′i , i = 1, 2, where V ′i is an isometry of X1i onto JjiX2j of the form

V ′i (ϕ,ψ) = {ϕ,ψ′}, ‖ψ‖j = ‖ψ′‖j .

Proof. Assume
(
Ã1, Ã2

)
is a Lagrangian pair extension of (A1, A2). Then (i) and (ii)

are valid due to Theorem 4.1. Since ṼiÃi = B̃j = Ã∗j it follows that ṼiX1i = Ã∗j 	Bj =
JjiX2j , and thus (iii) and (iv) hold true.

Conversely, assume that (A1, A2) is weakly Lagrangian with some Xi, i = 1, 2 sat-
isfying (i)-(iv). It is known from Theorem 4.1 that

(
Ã1, Ã2

)
is a weakly Lagrangian

extension of (A1, A2) with

Ãi = Ai ⊕X1i, Ã∗i = Bi ⊕ JijX2i.

Then dom Ãi = dom Ã∗j , since

dom Ãi = domAi + domX1i = domBj + dom JjiX2j = dom Ã∗j .

Moreover, Ṽi, i = 1, 2, give the desired isometries of Ãi onto Ã∗j and thus
(
Ã1, Ã2

)
is a

Lagrangian pair extension of (A1, A2). �

Theorem 4.2 differs from Theorem 4.1 in that equality occurs in (iii) and V ′i is now
onto JjiX2j . The condition (iv) implies that dimX1i = dimX2j . Moreover, it is possible

to specify those extensions
(
Ã1, Ã2

)
of (A1, A2) in Theorems 4.1 and 4.2 which are

operators. The following result is useful in this respect.

Lemma 4.3. Let A and Ã be relations from H1 to H2 and let B be a relation from H2

to H1, such that A ⊂ Ã ⊂ B∗. Denote

X1 := Ã	A, X2 := B∗ 	 Ã, X := X1 ⊕X2,

and

X ′ := PX(B∗)∞,

where PX is the orthogonal projection of H1 ×H2 onto X. Then Ã is an operator if and
only if the following two items are satisfied:

( i) A is an operator ;
( ii) X1 ∩X ′ = {(0, 0)} .

Proof. It is easily seen that

mul Ã = mulB∗ ∩ (dom J12X2)
⊥
,

so that the conclusion follows. �
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Proposition 4.4. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2), and let Xi =
B∗i 	 Ai, i = 1, 2. Assume that

(
Ã1, Ã2

)
is a weakly Lagrangian pair extension of

(A1, A2) in (H1, H2) with Ãi = Ai⊕X1i, X1i ⊂ Xi. Then Ã1 and Ã2 are both operators
if and only if the following two conditions are satisfied:

( i) A1 and A2 are both operators;
( ii) X1i ∩X ′

i = {(0, 0)}, where X ′
i := PXi(B

∗
i )∞, i = 1, 2.

Proof. Apply Lemma 4.3 successively with A := Ai, Ã := Ãi and B := Bi. �

Corollary 4.5. If (A1, A2) is a weakly Lagrangian pair in (H1, H2) with domAi dense
in Hi, i = 1, 2, then (A1, A2) and every weakly Lagrangian pair extension of (A1, A2) in
(H1, H2) are pairs of operators.

Proof. Condition (ii) in Theorem 3.4 is trivially satisfied if B∗i , i = 1, 2 are operators.
From Theorem 3.4, this is the case if and only if domAi, i = 1, 2 are dense in Hi, i =
1, 2. �

A weakly Lagrangian pair (A1, A2) in (H1, H2) is said to be a weakly Lagrangian
densely defined pair if domAi are dense in Hi, i = 1, 2. The next characterization of
the Lagrangian pair extensions of a weakly Lagrangian densely defined pair (A1, A2) in
(H1, H2) follows from Proposition 4.2 and Corollary 4.5.

Proposition 4.6. A densely defined weakly Lagrangian pair (A1, A2) in (H1, H2) has a
Lagrangian pair extension

(
Ã1, Ã2

)
in (H1, H2) if and only if the following conditions

are satisfied:
( i) Xi = X1i + X2i, a direct sum, where Xi = ker (I +A∗iB

∗
i ), i = 1, 2;

( ii) (B∗i � X1i) ⊥ (B∗i � X2i) , i = 1, 2;
( iii) B∗i X2i = X1j , i, j = 1, 2, i 6= j;
( iv) ‖A∗iα‖i = ‖B∗jα‖i, α ∈ X1j , i, j = 12, i 6= j.

Proof. From Corollary 4.5 it follows that all Lagrangian pairs extensions
(
Ã1, Ã2

)
of

(A1, A2) are operators. Apply Theorem 4.2, and with Xi = domXi, X1i = domX1i,
X2i = domX2i, it follows that

Xi = B∗i � Xi, Xki = B∗i � Xki, i, k = 1, 2.

Clearly, Xi = ker (I + A∗iB
∗
i ). Condition (i) in Theorem 4.2 gives (i) and (ii) of this

result and (ii) in Theorem 4.2 implies the last statement describing
(
Ã1, Ã2

)
. Since

X1i = {(α,B∗i α), α ∈ X1i}, i = 1, 2,

X2i = {(β,B∗i β), β ∈ X2i}, i = 1, 2,

JijX2i = {(B∗i β,−β}, β ∈ X2i}, i = 1, 2, i, j = 1, 2,

the condition domX1j = dom JijX2i assures that α ∈ X1j if and only if α = B∗i β for
some β ∈ X2i. Then A∗iα = A∗iB

∗
i β = −β, which shows that

JijX2i = {(α,A∗iα), α ∈ X1i}.
Condition (iv) of Theorem 4.2 shows that the isometry Vi of X1i onto JjiX2j implies
that ‖A∗iα‖i = ‖B∗jα‖i, α ∈ X1j . �

5. Extension of weakly Lagrangian pairs in larger Hilbert spaces

Let (A1, A2) be a weakly Lagrangian pair in (H1, H2). It will be shown how the results
of Section 4 may be applied to investigate the Lagrangian pair extensions of (A1, A2) in
a pair of larger Hilbert spaces

(
H̃1, H̃2

)
, where Hi ⊂ H̃i, i = 1, 2.
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Assume the weakly Lagrangian pair (A1, A2) with the isometries V1 and V2 has a
Lagrangian pair extension

(
Ã1, Ã2

)
in

(
H̃1, H̃2

)
, with the isometries Ṽ1 and Ṽ2, where

H̃i = Hi ⊕ H′i, i = 1, 2, are the orthogonal sums of the Hilbert spaces Hi and H′i,
respectively. The Hilbert space H1 × H2 can be identified with (H1 ⊕ {0})× (H2 ⊕ {0})
and H′1×H′2 can be identified with ({0} ⊕ H′1)×({0} ⊕ H′2) in H̃1×H̃2, and then (A1, A2)
is identified with (A1 ⊕ {(0, 0)}, A2 ⊕ {(0, 0)}). Then Ai ⊂ Ãi as a subspace of H̃i × H̃j

and Vi = Ṽi � Ai. Define the pair (A′1, A
′
2) as follows

A′i =
{

(x′i, y
′
j) ∈ Ãi ∩

(
H′i × H′j

)
: Ṽi(x′i, y

′
j) ∈ H′i × H′j

}
, i, j = 1, 2, i 6= j.

Note that (x′i, y
′
j) ∈ H′i×H′j is identified with

(
(0, x′i), (0, y

′
j)

)
∈ H̃i×H̃j , i, j = 1, 2, i 6= j.

Let Pi and P ′i be the orthogonal projections from H̃i × H̃j onto Hi × Hj and H′i × H′j ,
respectively, and, pi and p′i be the orthogonal projections from H̃i onto Hi and H′i, i = 1, 2,
respectively.

Theorem 5.1. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2) with the isometries
V1 and V2, and let

(
Ã1, Ã2

)
be a Lagrangian pair extension of (A1, A2) in

(
H̃1, H̃2

)
with the isometries Ṽ1 and Ṽ2. Then (A′1, A

′
2) is a weakly Lagrangian pair in (H′1, H′2)

with the isometries V ′i := Ṽi � A′i. Moreover, the following relations hold:

Ai ⊆ Ãi, Ai ⊆ PiÃi ⊆ B∗i , i = 1, 2,(5.1)

Bi ⊆ Ã∗i , Bi ⊆ PjÃ
∗
i ⊆ A∗i , i, j = 1, 2, i 6= j,(5.2)

and

A′i ⊆ Ãi, A′i ⊆ P ′i Ãi ⊆ B′i
∗
, i = 1, 2,(5.3)

B′i ⊆ Ã∗i , B′i ⊆ P ′jÃ
∗
i ⊆ A∗i , i, j = 1, 2, i 6= j.(5.4)

Proof. Since Vi = Ṽi � Ai and Bi = VjAj ⊂ A∗i it follows that Bi = ṼjAj ⊂ ṼjÃj = Ã∗i ,
and hence Bi = PjBi ⊆ PjÃ

∗
i . Now let (a, b) ∈ Ã∗i and consider Pj(a, b) = (pja, pib). If

(x, y) ∈ Ai ⊂ Ãi, then

〈(pja, pib), (x, y)〉 = [pib, x]i − [pja, y]j
= [b, x]i − [a, y]j
= 〈(a, b), (x, y)〉 = 0,

which shows that PjÃ
∗
i ⊆ A∗i . Similarly, if (c, d) ∈ Ãi and (α, β) ∈ Bi ⊂ Ã∗i , then

〈(pic, pjd), (α, β)〉 = [pjd, α]j − [pic, β]i
= [d, α]j − [c, β]i
= 〈(c, d), (α, β)〉 = 0,

which gives PiÃi ⊂ B∗i . Thus (5.1) and (5.2) are verified. Moreover, A′i, i = 1, 2
are closed relations. Indeed, if (x′n, y

′
n) ∈ A′i and (x′n, y

′
n) → (x′, y′) ∈ H′i × H′j , then

(x′, y′) ∈ Ãi ∩
(
H′i × H′j

)
, since Ãi and H′i ×H′j are closed. Now, the following inequality

‖PiṼi(x′, y′)‖ = ‖PiṼi(x′, y′)− PiṼi(x′n, y
′
n)‖

= ‖PiṼi(x′ − x′n, y
′ − y′n)‖

≤ ‖(x′ − x′n, y
′ − y′n)‖,

(5.5)

shows that PiṼi(x′, y′) = 0, or that Ṽi(x′, y′) ∈ H′i × H′j , and hence (x′, y′) ∈ A′i.
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Let (y′j , x
′
i) ∈ A′j ⊆ Ãj and let x′′i ∈ domA′i ⊆ dom Ãi = dom Ã∗j , with (x′′i , yj) ∈ Ã∗j .

Then 〈
(y′j , x

′
i), (x

′′
i , p

′
jyj)

〉
= [x′i, x

′′
i ]i −

[
y′j , p

′
jyj

]
j

= [x′i, x
′′
i ]j −

[
y′j , yj

]
j

=
〈
(y′j , x

′
i), (x

′′
i , yj)

〉
= 0,

which implies (x′′i , p
′
jyj) ∈ A′j

∗, and, in particular, domA′i ⊂ domA′j
∗. Clearly, the pair

(A′i, A
′
2) with the isometries V ′i = Ṽi � A′i, i = 1, 2, is a weakly Lagrangian pair in

(H′i, H′j), and B′j := V ′iA
′
i is given by

B′j =
{

(x, y) ∈ Ã′
∗
j ∩

(
H′i × H′j

)
: Ṽ −1

i (x, y) ∈ H′i × H′j

}
.

The inclusions (5.3) and (5.4) follow using similar arguments as for the proof of (5.1)
and (5.2), respectively. �

In general it can not be asserted that A′i = Ãi ∩
(
H′i × H′j

)
, that is, for {x′i, y′j} ∈

Ãi ∩
(
H′i × H′j

)
it is not possible to guarantee that Ṽi(x′i, y

′
j) ∈ H′i × H′j .

Clearly, Ṽi(x′i, y
′
j) = (x′i, z

′
j) ∈ Ã∗j , and ‖y′j‖2

j = ‖z′j‖2
j = ‖pjz

′
j‖2

j + ‖p′jz′j‖2
j . Since

PiÃ
∗
j ⊂ A∗j it follows for any (xj , yi) ∈ Aj that Pi(x′i, z

′
j) = (0, pjz

′
j) ∈ A∗j , and thus,

[yi, 0]i = [xj , pjz
′
j ]j = 0,

which implies pjz
′
j ∈ (domAj)

⊥. Consequently, A′i = Ãi ∩
(
H′i × H′j

)
if domAi is dense

in Hi, i = 1, 2.
Define the subspaces A+

i by

A+
i :=

{
(xi, yj) ∈ Ãi ∩ (Hi × Hj) : Ṽi(xi, yj) ∈ Hi × Hj

}
.

Then clearly
(
A+

1 , A
+
2

)
is a weakly Lagrangian pair in (H1, H2) with the isometries Ṽi �

A+
i , so that it is a weakly Lagrangian pair extension of (A1, A2). If (A1, A2) is a maximal

weakly Lagrangian pair in (H1, H2), then Ai = A+
i and Ai = Ãi ∩ (Hi × Hj). Moreover,

if domA′i are dense in H′i, then A+
i = Ãi ∩ (Hi × Hj), i = 1, 2.

The next result gives a necessary condition for the existence of a Lagrangian pair
extension

(
Ã1, Ã2

)
in (H̃1, H̃2).

Proposition 5.2. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2), with the isome-
tries V1 and V2, and suppose that

(
Ã1, Ã2

)
is a Lagrangian pair extension of (A1, A2)

in (H̃1, H̃2), with the isometries Ṽ1 and Ṽ2, where H̃i = Hi ⊕ H′i. Then

Ãi = Ai ⊕ Ci, Ã∗j = Bj ⊕Dj ,(5.6)

where Ci = Ãi 	Ai, Dj = Ã∗j 	Bj and

ṼiCi = Dj , PiCi ⊆ Ei, PiDj ⊆ Fj ,(5.7)

where Ei = B∗i 	Ai, Fj = A∗j 	Bj. In particular,

domCi = domDj ,

and

pidomCi = pidomDj ⊆ domEi ∩ domEj .

Proof. Clearly,

ṼiCi = Ṽi

(
Ãi 	Ai

)
= ṼiÃi 	 ṼiAi

= B̃j 	Bj = Ã∗j 	Bj = Dj .
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If (xi, yj) ∈ Ci then (5.1) leads to Pi(xi, yj) ∈ PiÃi ⊆ B∗i . Let (x1i, y1j) ∈ Ai ⊆ Hi ×Hj .
Then the identity

[Pi(xi, yj), (x1i, y1j)] = [(xi, yj), (x1i, y1j)] = 0,

shows that PiCi ⊂ B∗i 	Ai = Ei. From (5.2) it follows that

PiDj = PiṼiCi ⊆ PiÃ
∗
j ⊆ A∗j ,

and using similar arguments as above it follows that PiDj ⊆ Fj , completing the proof. �

Proposition 5.3. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2) such that domAi

is dense in Hi, i = 1, 2. With the notations from Proposition 5.2, assume that

domEi ∩ domFj = {0}, i, j = 1, 2, i 6= j.(5.8)

Then (A1, A2) is a maximal weakly Lagrangian pair in (H1, H2). If (A1, A2) is not a
Lagrangian pair, it has no Lagrangian pair extension in any

(
H̃1, H̃2

)
.

Proof. Assume (A1, A2) has a weakly Lagrangian pair extension
(
A+

1 , A
+
2

)
in (H1, H2).

Then

Ai ⊆ A+
i ⊆ (B+

i )∗ ⊆ B∗i , Bi ⊂ B+
i ⊆ (A+

i )∗ ⊆ A∗i , i = 1, 2,

and thus A+
i , B+

i , B∗i and (B+
i )∗ are all operators. Using analogous notations as in

Proposition 5.2 it follows that

A+
i = Ai ⊕ C+

i , C+
i = A+

i 	Ai, (A+
j )∗ = Bj ⊕D+

j , D+
j = (A+

j )∗ 	Bj ,

where domC+
i ⊆ domD+

j . Thus

domC+
i ⊆ domC+

i ∩ domD+
j ⊆ domEi ∩ domFj ,

and (5.8) leads to domC+
i = {0}. Since C+

i is an operator, C+
i = {(0, 0)}, proving

A+
i = Ai.

Assume now that (A1, A2) has a Lagrangian pair extension (Ã1, Ã2) in
(
H̃1, H̃2

)
.

Since B∗i and A∗j are operators, Ei and Fj are operators, and the relations (5.7) and
(5.8) lead to

pidomCi = pidomDj = {0},
where Ci and Dj are as in Proposition 5.2. Then PiCi ⊆ Ei and PiDj ⊆ Fj imply
that PiCi = PiDj = {(0, 0)}. Therefore A∗j ⊆ PiÃ

∗
j . Indeed, let (xi, yj) ∈ A∗j , and

(aj , bi) ∈ Ãj . Then the decomposition

(aj , bi) = (a1j , b1i) + (α, β),

holds with (a1j , b1i) ∈ Aj and (α, β) ∈ Cj . Clearly,

Pj(α, β) = (pjα, piβ) = (0, 0),

so that

〈(aj , bi), (xi, yj)〉 = 〈(a1j , b1i), (xi, yj)〉 = 0,

showing that A∗j ⊆ PiÃ
∗
j . Thus Ã∗j ⊆ PiÃ

∗
j = Pi(Bj ⊕ Dj) = Bj , for PiDj = {(0, 0)}.

Now Bj ⊆ A∗j and therefore Bj = A∗j , which means that (A1, A2) has to be a Lagrangian
pair. If (A1, A2) is not a Lagrangian pair, this contradiction shows that (A1, A2) has no
Lagrangian pair extension in any H̃1 × H̃2. �

The purpose of the next part of this section is to describe the Lagrangian pair ex-
tensions in

(
H̃1, H̃2

)
of a weakly Lagrangian pair (A1, A2) in (H1, H2). For such(

Ã1, Ã2

)
, with the isometries Ṽ1 and Ṽ2, consider (A′1, A

′
2) as in Theorem 5.1, and

define Ai := Ai ⊕A′i in H̃i × H̃j , by

Ai =
{(

(xi, x
′
i), (yj , y

′
j)

)
∈ H̃i × H̃j : (xi, yj) ∈ Ai, (x′i, y

′
j) ∈ A′i

}
,
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and define the isometries Vi := Vi ⊕ V ′i on Ai, where Vi = Ṽi � Ai and V ′i = Ṽi � A′i.
Furthermore, define Bj := ViAi.

Proposition 5.4. The pair (A1, A2) is a weakly Lagrangian pair in
(
H̃1, H̃2

)
with the

isometries V1 and V2. Moreover, the following relations hold true:

A∗i = A∗i ⊕ (A′i)
∗, Bi = Bi ⊕B′i, B∗i = B∗i ⊕ (B′i)

∗,(5.9)

Ai ⊆ Ãi ⊆ B∗i , Bi ⊆ Ã∗i ⊆ A∗i ,(5.10)

Ei := B∗i 	Ai = Ei ⊕ E′i,(5.11)

where Ei = B∗i 	Ai and E′i = (B′i)
∗ 	A′i,

(B∗i )∞ = (B∗i )∞ ⊕ ((B′i)
∗)∞,(5.12)

PEi
(B∗i )∞ = PEi(B

∗
i )∞ ⊕ PE′

i
((B′i)

∗)∞,(5.13)

where PEi is the orthogonal projection from H̃1 × H̃2 onto Ei, PEi is the orthogonal
projection from H1×H2 onto Ei and PE′

i
is the orthogonal projection from H′1×H′2 onto

E′i, respectively.

Proof. Clearly, Ai = Ai ⊕ A′i implies that A∗i = A∗i ⊕ (A′i)
∗, and since (A1, A2) and

(A′1, A
′
2) are weakly Lagrangian pairs in (H1, H2) and (H′1, H′2), respectively, it follows

that (A1,A2) is a weakly Lagrangian pair in
(
H̃1, H̃2

)
with the isometries Vi = Ṽi �

Ai = Vi ⊕ V ′i , i = 1, 2. Moreover,

Bj = ViAi = ViAi ⊕ V ′iA
′
i = Bj ⊕B′j ,

and therefore B∗j = B∗j ⊕ (B′j)
∗, proving (5.9).

The inclusion Ai ⊂ Ãi implies Ã∗i ⊂ A∗i . Also Bi ⊂ Ã∗i since Bi ⊂ Ã∗i and B′i ⊂ Ã∗i
and thus Bi = Bi ⊕ B′i ⊂ Ã∗i . Then Ãi ⊂ B∗i , and then (5.10) is verified. The relations
(5.11) and (5.12) follow directly from the definition of Ai and the last equality in (5.9).
Finally, (5.13) is easily verified from the definitions which are involved. �

Theorem 5.5. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2) with the isome-
tries V1 and V2. Assume that

(
Ã1, Ã2

)
is a Lagrangian pair extension of (A1, A2) in(

H̃1, H̃2

)
with the isometries Ṽ1 and Ṽ2. If Ai = Ai ⊕ A′i, Ei = B∗i 	Ai, as in Proposi-

tion 5.4, then there exists a decomposition

Ei = E1i ⊕ E2i,(5.14)

such that

dom E1i = dom (JjiE2j),(5.15)

Ãi = Ai ⊕ E1i,(5.16)

Ṽi = Vi ⊕ V ′i,(5.17)

where

Vi = Ṽi � Ai,(5.18)

and V ′i is an isometry from E1i onto JjiE2j of the form

V ′i{αi, βj} = {αi, β
′
j}, ‖βj‖j = ‖β′j‖j .(5.19)

Conversely, if (A′1, A
′
2) is a weakly Lagrangian pair in (H′1, H′2) with the isometries V ′1

and V ′2 , and Vi = Vi ⊕ V ′i , i = 1, 2, are such that there exists a decomposition of Ei as
in (5.14), and the pair

(
Ã1, Ã2

)
with the isometries Ṽ1 and Ṽ2 defined by (5.17)–(5.19),

then
(
Ã1, Ã2

)
is a weakly Lagrangian pair extension of (A1, A2) in

(
H̃1, H̃2

)
, which is

a Lagrangian pair extension of (A1, A2).
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Furthermore, Ã1 and Ã2 are both operators if and only if A1 and A2 are both operators,
and

E1i ∩ PEi
(B∗i )∞ = {(0, 0)} .

Proof. A direct application of Theorem 4.2 and Lemma 4.3 leads to the statement of this
theorem. �

The next result deals with the particular case when A′i = Ãi ∩ (Hi × Hj).

Proposition 5.6. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2), and let
(
Ã1, Ã2

)
be a Lagrangian pair extension of (A1, A2) in

(
H̃1, H̃2

)
, where H̃i = Hi ⊕ H′i, i = 1, 2.

Then, A′i = Ãi ∩ (H′i × H′j) if and only if the projection Pi is one-to-one from E1i onto
PiE1i, i = 1, 2. If A′i = Ãi ∩ (H′i × H′j), then

dimE′i ≤ dimEi.

Similarly, Ai = Ãi ∩ (H′i ×H′j) if and only if P ′i is one-to-one from E1i onto P ′1iE1i, and,
in this case

dimEi ≤ dimE′i.

Moreover, if Ai = Ãi ∩ (Hi × Hj) and A′i = Ãi ∩ (H′i × H′j), then

dimEi = dimE′i = dim E1i = dim E2i.

Proof. Assume A′i = Ãi ∩ (H′i × H′j) and let (α, β) ∈ E1i, Pi(α, β) = (0, 0). Then
(α, β) = P ′i (α, β) ∈ E′i. Since A′i and E′i are orthogonal it follows that (α, β) = (0, 0),
showing that Pi is one-to-one on Ei. Conversely, assume Pi is one-to-one on E1i. Let
(a, b) ∈ Ãi, Pi(a, b) = (0, 0), that is

(a, b) ∈ Ãi ∩
(
H′i × H′j

)
.

Then

(a, b) = (x, y) + (u, v),

where (x, y) ∈ Ai, (u, v) ∈ E1i, and

(0, 0) = Pi(a, b) = Pi(x, y) + Pi(u, v).

But, Pi(x, y) ∈ Ai, Pi(u, v) ∈ PiE1i ⊆ Ei, and Ai orthogonal to Ei imply that

Pi(x, y) = Pi(u, v) = (0, 0).

This implies (u, v) = (0, 0), or

(x, y) = P ′i (x, y) ∈ A′i,
that is

Ãi ∩
(
H′i × H′j

)
⊆ A′i.

Clearly, A′i ⊆ Ãi ∩
(
H′i × H′j

)
, and thus

A′i = Ãi ∩
(
H′i × H′j

)
.

Assume now that A′i = Ãi ∩
(
H′i × H′j

)
. Then PiE1i ⊆ E1i, and, since Pi is one-to-one on

E1i, it follows that dim E1i = dimPiE1i ≤ dimEi. Then

Ei = E1i ⊕ E2i = Ei ⊕ E′i,

and dim E1i = dim E2i (which follows from (5.15)) lead to

dim Ei = dimEi + dimE′i = 2dim E1i ≤ 2 dimEi,

or, dimE′i ≤ dimEi, as stated. The others statements have a similar proof. �

Corollary 5.7. If domAi is dense in Hi, then

A′i = Ãi ∩
(
H′i × H′j

)
,
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Pi is one-to-one on E1i and

dimE′i ≤ dimEi.

The next result identifies those Lagrangian pairs
(
Ã1, Ã2

)
which are operators in the

case when domAi is dense in Hi, i = 1, 2.

Proposition 5.8. Let (A1, A2) be a weakly Lagrangian pair in (H1, H2), let
(
Ã1, Ã2

)
be

a Lagrangian pair extension of (A1, A2) in (H′1, H′2), and assume that domAi is dense
in Hi, i = 1, 2. Then Ã1 and Ã2 are both operators if and only if A′1 and A′2 are both
operators.

Proof. If Ãi is an operator then A′i is an operator as well since A′i ⊂ Ãi. Assume now
that A′1 and A′2 are both operators. Since domAi is dense in Hi it follows that B∗i is an
operator and thus Ai is an operator. Therefore Ai is an operator. In order to show that
Ãi is an operator, let (α, β) ∈ E1i ∩ PEi

(B∗i )∞. Since

(0, 0) = Pi(α, β) ∈ PE1i
(B∗i ),

and Pi is one-to-one on E1i it follows that (α, β) = (0, 0), showing that

E1i ∩ PEi
(B∗i )∞ = (0, 0),

which completes the proof. �

The operator version of Theorem 5.5 is now stated. Its proof follows immediately from
Theorem 5.5 –Proposition 5.8.

Theorem 5.9. Let (A1, A2) be a weakly Lagrangian densely defined pair in (H1, H2).
Assume that

(
Ã1, Ã1

)
is a Lagrangian pair extension of (A1, A2) in (H̃1, H̃2), where

H̃i = H1 ⊕ H′i. If A′i = Ãi ∩
(
H′i × H′j

)
, then (A′1, A

′
2) is a weakly Lagrangian pair in

(H′1, H′2). Let Ai = Ai ⊕ A′i, i = 1, 2. Then (A1, A2) is a weakly Lagrangian operator
pair in

(
H̃1, H̃2

)
such that

Ai ⊆ Ãi ⊆ B∗i ,(5.20)

Ei = B∗i 	Ai = Ei ⊕ E′i,(5.21)

where,

Ei = B∗i 	Ai, E′i = B′i
∗ 	A′i.(5.22)

Moreover,
( i) Ei = E1i ⊕ E2i;
( ii) dom E1i = dom JjiE2j;
( iii) Pi is one-to-one from E1i onto PiE1i ⊆ E1i;
( iv) Ãi = Ai ⊕ E1i;
( v) dimE′i ≤ dimEi;
( vi) There is an isometry V1i of E1i onto JjiE2j of the form

V1i{α, β} = {α, β′}, ‖β‖j = ‖β′‖j , α ∈ dom E1i.

Conversely, assume for a given weakly Lagrangian pair (A1, A2) that there exists a weakly
Lagrangian operator pair (A′1, A

′
2) in (H′1, H′2) such that (5.20)-(5.22) are satisfied, and

the pair
(
Ã1, Ã2

)
and the isometries V1i, i = 1, 2, exist, satisfying (i)–(vi). Then(

Ã1, Ã2

)
is a Lagrangian pair in

(
H̃1, H̃2

)
, and

A′i = Ãi ∩
(
H′i × H′j

)
.
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Remark 5.10. Assume that (A1, A2) is a maximal weakly Lagrangian operator pair in
Theorem 5.9. Then for any Lagrangian operator pair extension

(
Ã1, Ã2

)
it follows that

Ai = Ãi ∩ (Hi × Hj) ,

and Proposition 5.6 then implies that dim Ei = dimE′i = dim E1i = dim E2i.

6. A class of weakly Lagrangian pairs of differential operators

Let H = L2(0, 1) and let D0 be the space of all absolutely continuous functions f on
the interval 0 ≤ x ≤ 1 satisfying the condition f(0) = f(1), and such that its derivative
f ′ is also an element of H. Clearly, D0 is a dense subspace of H. Define two (linear)
operators Aj0, 1 ≤ j ≤ 2 in H by domA10 = domA20 = D0 and

Aj0f = Lj0f := Ωjf
′ + ajf, f ∈ D0,

where Ωj and aj , 1 ≤ j ≤ 2 are some non-zero complex numbers which satisfy the
following conditions

|Ω1| = |Ω2|, |a1| = |a2|, Ωjaj ∈ R, 1 ≤ j ≤ 2.

Let D+
0 be the set of all absolutely continuous continuous functions on the interval

0 ≤ x ≤ 1 such that f ′ ∈ H. It is now easily seen that the operators A∗10 and A∗20 have
the domains given by domA∗10 = domA∗20 = D+

0 and are defined by

A∗jf = L+
j f := −Ωjf

′ + ajf, f ∈ D+
0 , 1 ≤ j ≤ 2.

From now on the indices j and k will run from 1 to 2 and are different whenever they
appear in the same sentence. Since ‖Ajf‖ = ‖A∗kf‖ for all f ∈ D0 it follows that the
operators V10 : A10 → A∗20 and V20 : A20 → A∗10, defined by

V10(f, L10f) = (f, L+
20), V20(f, L20f) = (f, L+

10), f ∈ D0

are two isometries. Therefore the pair (A10, A20) is a densely defined weakly Lagrangian
pair in (H,H). Furthermore, the corresponding operators B10 and B20 are defined on D0

and are given by

B10f = L+
20f, B20f = L+

10f, f ∈ D0,

while their adjoints B∗10 and B∗20 are defined on D+
0 and are given by

B∗10f = L20f, B∗20f = L10f, f ∈ D+
0 .

Let H0 be a finite-dimensional subspace of H and define the operators A1 and A2 to be
the restrictions of A10 and A20 to domA1 = domA2 = D := D0 ∩ H⊥0 . Thus, A1 ⊂ A10,
A2 ⊂ A20, so that

A∗10 ⊂ A∗1, A∗20 ⊂ A∗2.(6.1)

Furthermore,

mulA∗j = (domAj)⊥ = clos (D⊥
0 +̂ H0),

which implies that

H0 ⊂ mulA∗j , 1 ≤ j ≤ 2.(6.2)

It follows from (6.1) and (6.2) that

A∗j0 +̂ ({0} × H0) ⊂ A∗j , 1 ≤ j ≤ 2.

Using similar arguments as in [5] it can be shown that in fact there is equality in the
above inclusions, namely,

A∗j = A∗j0 +̂ (A∗j )∞, (A∗j )∞ := {0} × H0.(6.3)

Furthermore, the single-valued part of A∗j is given by

(A∗j )sf = A∗0jf − P0A
∗
0jf, f ∈ D+

0 ,

where P0 is the orthogonal projection of H onto H0. Indeed, let (f, g) ∈ (A∗j )s, so that
(f, g) = (f,A∗j0f + ϕ), for some ϕ ∈ H0, and (f, g) is orthogonal to (0, ψ) for all ψ ∈ H0,
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that is

[A∗j0f + ϕ,ψ] = 0,

for all ψ ∈ H0, or ϕ = −P0A
∗
j0f .

Consider V1 and V2 the restrictions of V10 and V20 to A1 and A2, respectively. There-
fore, the pair (A1, A2) is now a (non-densely defined) Lagrangian pair in (H,H). It is
clear that the corresponding operators B1 and B2 are the restrictions of B10 and B20 to
D. Moreover,

mulB∗k = (domBk)⊥ = (domAj)⊥ = mulA∗j = H0,

and

B∗k = B∗k0 +̂ (B∗k)∞, (B∗k)sf = B∗k0f − P0B
∗
k0f, f ∈ D+

0 ,(6.4)

where (B∗k)∞ = (A∗j )∞ = {0} × H0.

Remark 6.1. The fact that Aj ⊂ B∗j , and Aj and (A∗k)s are operators does not necessarily
imply that Aj ⊂ (B∗j )s. Indeed, let H0 be the one-dimensional space spanned by the
function ϕ(x) = x for all 0 ≤ x ≤ 1. Assume that Aj ⊂ (B∗j )s, so that ranAj ⊂ ran (B∗j )s,
or

K0 := (ranAj)⊥ ⊃ (ran (B∗j )s)⊥ ⊃ H0.

Thus, ϕ ∈ K0 = ker A∗j , or by (6.3)

A∗j0ϕ = −Ωjϕ
′ + ajϕ = −bjϕ,

for some complex constant bj . Since

−Ωjϕ
′ + ajϕ+ bjϕ = −Ωj + (aj + bj)x

is not the zero function it follows that the assumption is false. Thus, Aj 6⊂ (B∗j )s.

Define now the subspaces Xj = B∗j 	Aj and Yj = A∗j 	Bj . Since

Xj = B∗j ∩A⊥j = B∗j ∩ JkjA
∗
j ,

it follows that (fj , gj) ∈ Xj if and only if (fj , gj) ∈ B∗j and (gj ,−fj) ∈ A∗j . Furthermore,
(6.3) and (6.4) imply that (fj , gj) ∈ Xj if and only if fj ∈ domB∗j = D+

0 , gj ∈ domA∗j =
D+

0 , and

gj = Ljfj − ϕj , −fj = L+
j gj − ψj ,(6.5)

for some ϕj , ψj ∈ H0. This system of equations has a solution for every pair (ϕj , ψj) ∈
H0 × H0. When ϕj = ψj = 0 the pair (fj , gj) satisfies the system

gj = Ljfj , −fj = L+
j gj ,

and hence fj and gj are solutions of the same second order differential equation

(L+
j Lj + I)u = −ΩjΩju

′′ + (1 + |aj |2) = 0.

It follows that

dimXj = 2 + 2dim H0 = dimYj

and Yj = JjkXj is the set of all (fj , gj) such that fj , gj ∈ D+
0 and

gj = L+
j fj − ϕj , −fj = Ljgj − ψj ,

for some ϕj , ψj ∈ H0. Applying Theorem 4.2, the Lagrangian extensions
(
Ã1, Ã2

)
of

(A1, A2) in (H,H) will be next described. In fact Ãj = Aj ⊕X1j , where Xj = X1j ⊕X2j

with dimX1j = dimX2j = 1 + dim H0, and domX1j = dom JkjX2k, and there are two
isometries Ṽj = Vj ⊕ V ′j , 1 ≤ j ≤ 2, where V ′j is an isometry from X1j onto JkjX2k of
the form

V ′j (αj , βj) = (αj , β
′

j), ‖βj‖ = ‖β
′

j‖.
Here, Vj is the isometry of Aj onto Bk given by

Vj(f,Ajf) = (f,Bkf), f ∈ D.
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Since Ãj = B∗j 	X2j it follows that Ãj can be described as the set of all (fj , gj) ∈ B∗j
such that

[gj , αj ]− [fj , βj ] = 0,(6.6)

for all (αj , βj) ∈ JjkX1j . Since B∗j = B∗j0 +̂ ({0} × H0) it follows that the pairs (fj , gj)
and (αj , βj) can be expressed by

(fj , gj) = (fj , Ljfj + ψj), (αj , βj) = (αj , L
+
j αj + χj),

with fj ∈ D+
0 , αj ∈ dom JjkX2j , and for some elements ψj , χj ∈ H0. The condition

(6.6) may then be written as

〈fjαj〉j + [ψj , αj ]− [fj , χj ] = 0,(6.7)

where

〈fjαj〉j = [Ljfj , αj ]− [fj , L
+
j αj ] = Ωj [αj(1)fj(1)− αj(0)fj(0)].

In (6.7) are in fact 1 + dim H0 independent boundary-integral conditions specifying the
elements of Ãj .

Assume now that dim H0 = 1 and that H0 is spanned by a function ϕ ∈ H with
‖ϕ‖ = 1. Then in the above ψj = cjϕ, χj = djϕ for some complex constants cj and dj .
Let (α1j , L

+
j α1j + d1jϕ), (α2j , L

+
j α2j + d2jϕ) be a basis for the subspace JjkX2j . Then

(6.7) is equivalent to the following equations

〈fjαlj〉j + cj [ϕ, αlj ]− dlj [fj , ϕ] = 0, 1 ≤ l ≤ 2,(6.8)

for (fj , Ljfj + cjϕ) ∈ Ãj . Since (Ãj)∞ ⊂ (B∗j )∞ = {0} ×H0 it follows that Ãj is not an
operator if and only if (o, ϕ) ∈ Ãj , and using (6.8) it follows that this is the case if and
only if

[ϕ, α1j ] = [ϕ, α2j ] = 0,(6.9)

that is ϕ ∈ dom (JjkX2j)⊥ = dom (X1k)⊥. Therefore, two cases have to be considered:
A. Ãj is an operator and, for instance, [ϕ, α1j ] 6= 0;
B. Ãj is not an operator, and (6.9) holds true.
In the first case it follows from (6.8) that cj can be uniquely obtained, and then Ãj

can be specified as the set of all pairs (fj , Ljfj + cjϕ) ∈ B∗j0 such that the following
relations hold:

〈fjαj〉j + [fj , djϕ] = 0, cj =
1

[ϕ, α1j ]
([fj , djϕ]− 〈fjα1j〉j) ,

where

αj = [α1j , ϕ]α2j − [α2j , ϕ]α1j , dj = [α2j , ϕ]d1j − [α1j , ϕ]d2j .

In the latter case, namely B, it follows that [fj , ϕ] = 0 for all fj ∈ dom Ãj , since

(dom Ãj)⊥ = mul Ã∗j = mul Ãj = H0,

and this relation can be used in (6.8) to obtain Ãj as the set of all pairs (fj , Ljfj +cjϕ) ∈
B∗0j satisfying the following relation

〈fjα1j〉j = 0, 〈fjα2j〉j = 0, [fj , ϕ] = 0.(6.10)

It is easily seen that the second condition in (6.10) is superfluous, and thus (fj , Ljfj+cjϕ)
is an element of Ãj if and only if

〈fjα1j〉j = 0, [fj , ϕ] = 0, fj ∈ D+
0 ,(6.11)

and cj is a complex number. The single-valued parts of Ã1 and Ã2, namely (Ã1)s and
(Ã2)s determine a densely defined Lagrangian pair in (H⊥0 ,H

⊥
0 ), and it is specified by the

boundary-integral conditions (6.11) and

(Ãj)sfj = Ljfj − (Ljfj , ϕ)ϕ, 1 ≤ j ≤ 2.



100 ADRIAN SANDOVICI

Notice that since α1j ∈ domX1j ⊂ dom Ãj it follows that α1j is a function satisfying

〈α1jα1j〉j = Ωj

(
|α1j(1)|2 − |α1j(0)|2

)
= 0.

Hence, α1j(0) = θ1jα1j(1), where |θ11| = |θ12| = 1, and the conditions in (6.11) become

fj(1) = θ1jfj(0), [fj , ϕ] = 0 for all fj ∈ D+
0 .
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